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1 Introduction

With the expected uptake of electric vehicles in the near future, we are likely to
observe overloading in the local distribution networks more frequently. Such devel-
opment suggests that a congestion management protocol will be a crucial component
of future technological innovations in low voltage networks. An important property
of a suitable network capacity management protocol is to balance network efficiency
and fairness requirements. Assuming a stochastic model, we study the proportional
fairness (PF) protocol managing the network capacity in charging of electric vehi-
cles. We explore the onset of congestion by analysing the critical arrival rate, i.e. the
largest possible vehicle arrival rate that can still be fully satisfied by the network.
We compare the proportionally fair management protocol with the max-flow (MF)
management protocol. By numerical simulations on realistic networks, we show that
proportional fairness leads not only to more equitable distribution of power allo-
cations, but it can also serve slightly larger arrival rate of vehicles. We consider
simplified setup, where the power allocations are dependent on the occupation of
network nodes, but they are independent of the exact number of vehicles, and to
validate numerical results, we analyse the critical arrival rate on a network with two
edges, where the optimal power allocations can be calculated analytically.

2 Optimization Model

We model the electrical distribution network as a directed rooted tree graph composed
of the node set V and edge set E . Only the root node of the tree r ∈ V injects the
power into the network and electric vehicles can be plugged into all other nodes. By
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the symbol � ( j) we denote the subtree rooted in the node j ∈ V . An edge ei j ∈ E
connects node i to node j , where i is closer to the root than j , and is characterised
by the impedance Zi j = Ri j + i Xi j , where Ri j is the edge resistance and Xi j the
edge reactance. The power loss along edge ei j is given by Si j (t) = Pi j (t) + i Qi j (t),
where Pi j (t) is the real power loss, and Qi j (t) the reactive power loss. We model car
batteries as elastic loads (i.e. able to absorb any value of power they are allocated).
Electric vehicle l = 1, . . . , N (t) receives only active power Pl(t), where N (t) is the
number of vehicles charging at time t . Value Δil(t) is one if electric vehicle l is
charging on node i and zero otherwise. Vehicle l derives a utility Ul(Pl(t)) from the
allocated charging power Pl(t). Let P�( j) denote the active power, and Q�( j) the
reactive power consumed by the subtree � ( j) that include power consumed by all
vehicles connected to the subtree and power losses dissipated on edges of the subtree.
By the symbol Vi (t), we denote the voltage level on the node i ∈ V . We allocate the
power to electric vehicles by maximizing the aggregate utility U (t), while making
sure that all nodal voltages are within the interval ((1 − α)Vnominal, (1 + α)Vnominal),
where α is a parameter and Vnominal is the nominal voltage level the network is
operated on (for more details see Ref. [1]):

maximise
W (t)

U (t) =
N (t)∑

l=1

Ul(Pl(t)) (1)

subject to ((1 − α)Vnominal)
2 ≤ Wii (t) ≤ ((1 + α)Vnominal)

2 , i ∈ V, (2)

Wi j (t) − Wj j (t) − P�( j)(t)Ri j − Q�( j)(t)Xi j = 0, ei j ∈ E, (3)
(
Wii (t) Wi j (t)
Wji (t) Wj j (t)

)

� 0, ei j ∈ E . (4)

With every edge ei j ∈ E is associated one decision variable Wi j (t) that it is equal
to the product of real voltages on edge nodes, i.e. Wi j (t) = Vi (t)Vj (t) and simi-
larly with every node i ∈ V is associated variable Wii (t) = Vi (t)2. The generalized
inequality (4) means that matrices are positive semidefinite. Constraints (2) ensure
that all nodal voltages are within the defined limits. Constraints (3)–(4) have been
derived in reference [1] and they encode relations between decision variables Wi j (t),
power allocations Pl(t) and power losses along edges that arise from Kirchhoff’s
current and voltage laws, where:

P�(k) =
∑

i∈V�(k)

N (t)∑

l=1

Δil(t)Pl(t) +
∑

i∈V�(k)

∑

j :ei j∈E�(k)

Pi j (t), (5)

and

Q�(k) =
∑

i∈V�(k)

∑

j :ei j∈E�(k)

Qi j (t), (6)
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where power losses along edge ei j ∈ E can be expressed as:

Pi j (t) = (
Wii (t) − 2Wi j (t) + Wj j (t)

) Ri j

R2
i j + X2

i j

, (7)

and

Qi j (t) = (
Wii (t) − 2Wi j (t) + Wj j (t)

) Xi j

R2
i j + X2

i j

. (8)

We consider the proportional fair allocation representing a trade-off between
network throughput and equality in allocations [2], that maximizes the sum of the
logarithm of user rates, i.e. U (t) = ∑N (t)

l=1 log(Pl(t)). Computationally it is more
practical to use the equivalent definitionU (t) = ∑

i∈V+ wi (t) log(Pi(t)), where Pi(t)
is power allocated to network node i , V+ is the subset of nodes with at least one
charging vehicle, and wi (t) is a number of vehicles charging at node i at time t ,
i.e. wi (t) = ∑N (t)

l=1 Δil(t). Values Pl(t) can be then recovered from Pl(t) = Pi(t)
wi (t)

.
As a benchmark representing the efficient network throughput, we consider non-
unique max-flow allocation given by U (t) = ∑N (t)

l=1 Pl(t), where we optimise the
system whenever the configuration of vehicles changes. Max-flow maximizes the
network throughput, however, it can leave some users with zero power, which can
be considered as unfair from the user point of view. Both problems are convex, and
hence can be solved by general purpose optimization solvers.

To study the behaviour of proportional fairness and max-flow, we implemented a
discrete simulator that solves the problem (1)–(4) in discrete time steps. Simulations
start with empty network. Vehicles arrive to the network in continuous time, following
a Poisson process with rate λ, and choose node to charge randomly with uniform
probability. Vehicles have a battery with capacity B that is empty at arrival and leave
the network when it is full. The level of battery is given by the time integral of
allocated power.

3 Results

3.1 Numerical Experiments

We simulate vehicles charging on the realistic SCE 47-bus network [3] while set-
ting Vnominal = B = 1.0 and α = 0.1. In order to characterize the behaviour of the
network, we adopt the congestion parameter [4]:

η(λ) = lim
t→∞

1

λ

〈ΔN (t)〉
Δt

, (9)

where ΔN (t) = N (t + Δt) − N (t) and 〈. . . 〉 indicates an average over time window
of length Δt . Congestion parameter η(λ) = 0 when all cars leave the network fully
charged within a large enough time window, and η(λ) > 0, when some vehicles
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Fig. 1 a Congestion parameter η as a function of the vehicle arrival rate for the SCE 47-bus network
and for the simulation time horizon of 1.5 × 104. b Zoom of the critical region for longer horizon
of 105 time units. Symbols show average values over an ensemble of 25 independent runs and error
bars reflect 95 % confidence intervals

have to wait for increasingly long times to fully charge, i.e. the network is congested.
Simulation results in Fig. 1 show that the largest value of the arrival rate λc, when
all vehicles are still fully charged, is larger for proportional fairness than for max-
flow, meaning that proportional fairness is able to charge slightly larger number of
vehicles.

3.2 Onset of Congestion in 2-Edge Network

To validate analytically that λc can be different in both methods, we analyse a three-
node and two-edge network with node 1 (root node), and vehicles arriving at node 2
(the closest node to the root), and at node 3 (the leaf node), respectively, assuming
uniform R and X values.

The two congestion control methods lead to different allocations of instantaneous
power, with vehicles charging in different order and in different time intervals. The
voltage drops with the increasing distance from the root and the lower voltage limit
(constraint (2)) is fulfilled at equality for one node. The objective function of pro-
portional fairness guaranties that both nodes (if occupied by vehicles) will receive
positive power allocation. Thus, the lower voltage limit constraint is satisfied at equal-
ity on the most distant node from the root. In max-flow, however, the maximisation
of the aggregate power allocated to vehicles implies also minimising instantaneous
power losses, and this is achieved by allocating all power to the closest occupied
node from the root node.

Note that optimal max-flow allocation is independent of how many vehicles are
charging on each node. To simplify our analysis, we set wi to value one if at least one
vehicle is charging at node i , and zero otherwise for i ∈ 2, 3, and thus proportional
fair optimal power allocations will be also independent of the number of vehicles
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on each node. For this simplified setup we can easily estimate the critical value λc

analytically.
Under our assumptions, for 2-edge network the problem (1)–(4) can be solved

analytically. Optimal power allocation of max-flow at the node i ∈ {2, 3} is:

PMF
i = 2α(1 − α)V 2

nominal

(i − 1)R
. (10)

Optimal proportional fair power allocations are:

PPF
2 = 2V 2

nominal(3
√

γ − γ )

9R
and PPF

3 = (1 − α)V 2
nominal(

√
γ + 3α − 3)

3R
, (11)

where γ = 2
√

α2 − α + 1|α − 2| + 2α2 − 5α + 5. When deriving the value λc, we
assume a time interval Δt that is composed of two subintervals ti , when vehicles
situated at node i ∈ {2, 3} are charged. Within this time interval the demand arriving
at each of the nodes (i.e. BλcΔt

2 ) has to be the same as the energies PMF
2 t2 and PMF

3 t3
that max-flow is able to deliver at nodes 2 and 3, respectively. From here we obtain:

λMF
c = PMF

2

B
2 (

PMF
2

PMF
3

+ 1)
. (12)

Similarly, for proportional fairness we obtain:

λPF
c = PMF

3

B
2 (

PMF
3

PPF
2

− PPF
3

PPF
2

+ 1)
. (13)

We set parameters R = X = B = Vnominal = 1.0 andα = 0.1, yielding theoretical
predictions λMF

c = 0.12 and λPF
c ≈ 0.1222. Thus, our analyses show that propor-

tional fairness may support slightly larger arrival rate, giving support to our numerical
simulation on realistic electrical networks. To validate our analyses, we simulated
max-flow and proportional fair protocols in 2-edge network with two λ values. When
λ < λc number of vehicles is oscillating, while for λ > λc it has a tendency to grow
(see Fig. 2). Thus, numerical results are in good agreement with calculated values.

4 Conclusions

The main contribution of this paper is that we showed analytically that PF can accom-
modate larger arrival rate than MF. This result is surprising, because common expec-
tation is that efficiency of the system comes at the expense of the increased inequal-
ity [5]. However, it should be noted that here we optimise the dynamic system over
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Fig. 2 Representative time series for the 2-edge network. Panel a shows that for λ = 0.119 the max-
flow supplies all vehicles, whereas in panel b, for λ = 0.121, it is congested being in the agreement
with the calculated value λMF

c = 0.12. Panel c shows that for λ = 0.122 the proportional fairness
is supplying all vehicles, whereas in panel d, for λ = 0.123, it is congested being in the agreement
with the calculated value λPF

c ≈ 0.1222

a certain time period and our optimisation model is not dynamic, hence, it is only a
heuristic.
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