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Motivation

* Itis expected to continue electrification of individual and public
transport in order to reduce CO, emission in densely populated

urban areas.

* Advances in battery technologies and continuously decreasing
prices of electric vehicles may soon increase the interest in
converting large fleets of vehicles serving urban areas into
electric.

* High purchase costs of a new electric vehicle can be more easily
compensated by lower operational costs.

* To avoid delays in charging, caused by interaction with other
electric vehicles, a choice of a fleet operator can be to build their
own charging infrastructure.



Problem definition

Efficient design of a private charging infrastructure for a fleet of
electric vehicles operating in large urban areas (currently operating
using ICE vehicles).

Typical examples:
* fleet of taxi cabs
* fleet of vans used in the city logistics
* fleet of shared vehicles
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METHODOLOGY

First stage: Procedure to derive a suitable set of candidate locations
from GPS data

* a practical procedure where the outcomes can be simply controlled by setting
few parameter values.

Second stage: Solution of the mathematical model that combines
location and scheduling decisions to ensure that requirements of
vehicles can be satisfied.

The proposed methodology allows then to evaluate what percentage
of vehicles could be transformed to electric vehicles without affecting
their operation with the minimal requirements on building the
charging infrastructure.



METHODOLOGY

Data requirements

Dataset

+ +

historical low frequency GPS data describing the mobility patterns of individual
vehicles of the fleet.

data should be collected for several, typical and sufficiently long time periods
much easier to collect

no need to use expensive GPS trackers

not precise enough to determine the travel distances.

Map matching procedure

Estimation of the travel distances

The graph model of the road network including data about nodes, edges and their
elevation is needed

Estimation of the travel distances much more precisely by inducing them from the
road network.

Rahmani, M. and Koutsopoulos, H. N. (2013). Path inference from sparse floating car data for urban networks.
Transportation Research Part C: Emerging Technologies, 30:41-54.



METHODOLOGY

First stage - Candidate set locations

We use the historic GPS data to identify the set of suitable candidate
locations for charging stations.

We aim to identify locations where the large number of vehicles
frequently parks.

We proposed the following two-phase procedure:

* Phase 1: Identify the set of candidate locations for charging stations as
locations where many vehicles tend to park for a long enough time.

* Phase 2: Identify the set of vehicles that can be served by selected set of
candidate locations.
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Phase 1 - Identify the set of candidate locatiofnss

13

Step 1: Identify in the GPS trace the traversals that have the average
speed below the speed limit V__.

Step 2: Identify in the GPS trace the maximum connected sequences
of traversals longer than the time period T . .

Step 3: Identify as a candidate location the last node of each
connected sequence if there is no other candidate location within the
distance R __ .

After processing all GPS traces we remove all candidate locations that
are associated with less than M_. parking events.

min

o e N
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METHODOLOGY - First stage FeTHd

Phase 2 - Identify the set of coverable vehicles

For each vehicle we evaluate:
* its trajectory,

* whether it could be sufficiently recharged during parking events, to cover the
travel distances.

Unlimited capacity of charging points in each candidate location.
Capacity of each vehicle’s battery is K (in kilometers - reachable driving distance).

As a vehicle is driven its state of charge is decreasing by substracting from it the
travel distance.

Each time unit when the vehicle is charged we increase its state of charge by the
value of P.

We record the number of vehicles that cannot be served by a given set of
candidate locations, these are not included in the mathematical model.



METHODOLOGY

Second stage - Location-scheduling problem

We aim to minimize the costs that are required to set up the charging
infrastructure. (locating charging stations of the same type >>> minimizing just the
number of charging points).

Location optimization problem considering the scheduling problem to ensure that
there exist a feasible schedule how to recharge vehicles.

| - the set of candidate location where it is possible to locate the charging station,
T - the set of non-overlapping time intervals - individual charging time slots,

p - maximum number of charging stations,

C - set of vehicles, each equipped by the battery with maximal driving distance K,

R_- ordered sequence of parking events the list

N, - list of all time intervals teT that have an overlap with parking event reR,,
a..€ [0;1] - fraction of the time interval teT the vehicle ceC is parking,
B..€{0;1}, B, =1 if vehicle ceC parks at location i€l during time interval te T

u,, - driving distance of the vehicle ceC between parking events r-1 and r



METHODOLOGY

Second stage - Mathematical model

y; € {0;1} for ie I, where y; =1 if the charging station is located at the candidate
location i and y, = 0 otherwise,

s, € Z+for ie I, representing the number of charging points allocated to station ie |,

x.€ {0;1} for ce C; te T, where x_, =1 when vehicle ce Cis being charged during the
time interval te T and x_, = 0 otherwise,

d, > 0force C; re R_{0} {r } corresponds to the distance that the vehicle ce C at
the beginning of the pizrking event re R_is abie to drive.
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METHODOLOGY

Second stage - Mathematical model

Minimize E 5
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Numerical Experiments
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(b)week2

A fleet of more than 1,500 taxicabs operating in the «10° (a) week 1
area of Stockholm district, in Sweden. .

Each vehicle reported on average every 90 seconds
its ID, GPS position, timestamp and information
whether it is hired or not.

For the case study we selected four weeks
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Data

\ 7
\ B}, Stockholm Region

Usage Frequency
1-3500 Airport
3500 - 12000 Railway station
12000 - 33000
33000 - 76500
76500 - 140000



Numerical Experiments

Parameters Setting

Maximum driving distance K =300 km, Initial fraction of the driving
range a = 0.5

Charging speed P = 5 km/min., we do not limit the number of
charging stations, i.e.,p=[I|,V__=0.1m/s, T_. =15 min.

Y "min

We discretize the time in steps of 15 minutes.

R__ € {100;500;1000} meters
M_. e {100;150;800}

Numerical experiments were performed on the computer equipped
with CPU Intel (R) Core i7-5500U CPU with two 3 GHz cores and with
8 GB RAM. Mathematical model was solved using IP solver FICO
Xpress IVE 7.3.
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Table 1: Results of numerical experiments for the scenario Week 1.
Ryax My Cars |I|  Stations CPuy CPpa Timels] Gapl|%]

100 800 609 3 3 14 9 1.88 0.00
150 1186 27 27 38 6  1800.00 5.26
100 1287 44 44 54 6 22.10 0.00
500 800 1102 3 5 20 10 46.05 0.00
150 1442 46 40 44 5 1800.00 227
100 1475 77 51 54 4 1800.00 4.50
1000 800 1347 7 7 19 6  1800.00 21.05
150 1499 51 39 42 3 1800.00 4.57
100 1510 70 51 55 3 1800.00 46.90

Table 2: Results of numerical experiments for the scenario Week 2.

Rmax Mpmin  Cars |I| Stations CPy CPunae  Timels] Gapl|%)]
100 800 785 4 4 17 9 2.828 0.00
150 1292 30 30 35 4 16.642 0.00

100 1363 46 44 49 4 27.673 0.00

500 800 1188 5 5 18 7 1800.00 22.22
150 1477 46 36 38 2 218.37 0.00

100 1498 73 47 49 2 1800.00  272.97

1000 800 1409 8 8 19 5 1800.00 30.84
150 1506 50 38 63 3 1800.00 72.03
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Numerical Experiments

Results

Table 3: Results of numerical experiments for the scenario Week 3.
Rypax My Cars |I|  Stations CPgy CPua Time[s] Gapl|%

100 800 449 2 2 4 2 0.34 0.00
150 1019 24 24 27 2 2.84 0.00
100 1094 36 36 37 2 6.83 0.00
500 500 843 4 4 5 2 6.17 0.00
150 1324 39 37 39 2 46.86 0.00
100 1359 57 52 33 2 291.05 0.00
1000 800 1172 6 6 11 2 27.80 0.00
150 1417 43 38 39 2 547.72 0.00
100 1445 65 47 48 2 B898.37 0.00

Table 4: Results of numerical experiments for the scenario Week 4.
Rm\_’ Mn”'" C{IJ"E | .n'.il | SIﬂIfﬂHS C.Pfﬂfgf CPn;m TI..FTIE[S Gﬂp -%-

100 800 631 3 3 17 13 7.66 0.00
150 1221 33 33 39 7 1800.00 2.56
100 1325 50 49 53 5 38.21 0.00
500 800 1097 5 3 19 10 1800.00 5.26
150 1491 50 40 42 3 1800.00 2.38
100 1515 B0 36 58 3 1800.00 16.5
1000 800 1408 9 9 21 6 1800.00 15.67
150 1525 29 27 39 7 128.50 0.00
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Railway station Airport Ferry port

@ 1charging point at station . 4 charging points at station

. 2 charging points at station . 5 charging points at station

. 3 charging points at station 6 charging points at station




Conclusions

* OQur results indicate that this approach can be used to estimate the
minimal requirements to set up the charging infrastructure. The
proposed method is able to handle relatively large instances of
problems independently on the scenario.

* Problemswith R__ e {100;500} and M_. e {150;800} are often
solved to optimality or with small gap only.

* Charging points are typically located at parking lots in the vicinity
of airports, railways stations and other public spaces, which seem
to be natural locations for them.

* When comparing the results across selected scenarios we find
similar numbers of located stations in weeks 1, 2 and 4 and
significantly smaller number of charging points in week 3, which is
the most quiet week.



Conclusions

* We did not limit the number of charging stations by setting the
value of the parameter p. From the solutions we can see that if ||
is large enough, the optimization model has the tendency to
select the large set of charging stations with only few charging
points more frequently than locating only few charging stations
with many charging points.

* Such design can be also favorable for the electricity network as it
will not load the network largely at few locations, but the load is
spatially more distributed.

*  When we set the radius of charging points to R__ = 1000 meters,

the number of charging opportunities gets high and the solved
problem, especially during the busy weeks, becomes intractable
when solved by a general purpose solver. This result indicates the
limits of this methodology.
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Thank you for your attention.
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