

Advanced Superconductor Motor Demonstrator (ASuMED)

Enric Pardo, Institute of Electrical Engineering, Slovak Academy of Sciences

28 February 2018

When did you fly last time?

When did you fly last time?

Holidays

When did you fly last time?

Holidays

Business

When did you fly last time?

Holidays

Business

You fly more often than 20 years ago

When did you fly last time?

Holidays

Business

You fly more often than 20 years ago Not to mention 30 years ago!

Flights are longer

Asian tourists in Bratislava

Every day, more people in developing countries can afford a flight

It is only the beginning

Funded by the European Commission Grant No 723119

Every day, more people in developing countries can afford a flight

China and India:

Five times the people in the European Union

It is only the beginning

Funded by the European Commission Grant No 723119

Every day, more people in developing countries can afford a flight

China and India:

Five times the people in the European Union

A lot of emissions!

The European Commission wants to reduce emissions

ACARE Flightpath 2050 emission targets

ACARE Flightpath 2050 emission targets

Drastic reductions need drastic improvements

Gas turbine/generator

Funded by the European Commission Grant No 723119

Source: Airbus group innovations electric motors

15 28 February 2018 Enric Pardo, Institute of Electrical Engineering, Slovak Academy of Sciences

Picture from James L. Felder, NASA Glenn Research Center, "NASA Hybrid Electric Propulsion Systems Structures,"

Funded by the European Commission Grant No 723119

Picture from James L. Felder, NASA Glenn Research Center, "NASA Hybrid Electric Propulsion Systems Structures,"

Picture from James L. Felder, NASA Glenn Research Center, "NASA Hybrid Electric Propulsion Systems Structures,"

If EUROPE does not do them, others will

Superconducting generator

Advanced Superconductor Motor Demonstrator (ASuMED)

Enric Pardo, Institute of Electrical Engineering, Slovak Academy of Sciences

28 February 2018

ASuMED

ASuMED

ASuMED

Goals of project

- Why superconductors
- Consortium
- Our role

ASuMED Goals of project Why superconductors Consortium Our role

Superconducting motor for lab demonstration of: 1 MW 20 kw/kg around 50 kg

Superconducting motor for lab demonstration of: 1 MW 20 kw/kg around 50 kg

Could fit in the engine part of your car but with 10 times its power

Could fit in the engine part of your car but with 10 times its power

Conventional synchronous motor

ASuMED Goals of project Why superconductors Consortium Our role

Superconducting stator

Superconductors can carry very high current densities

Funded by the European Commission Grant No 723119

You can increase the power of the stator

Superconductors can carry very high current densities

You need low temperatures

You can increase the power of the stator
Superconductors can carry very high current densities

You need low temperatures

ASUME

REBCO superconducting at 90 K (-183 °C)

You can increase

the power of the stator

Superconductors can carry very high current densities

You need low temperatures

REBCO superconducting at 90 K (-183 °C)

Required performance maybe down to 20 K (-253 °C)

You can increase the power of the stator

Superconductors can carry very high current densities

You need low temperatures

REBCO superconducting at **90 K** (-183 °C)

Required performance maybe down to **20 K** (-253 °C)

Possible to cool down by: Liquid hydrogen: could seve as fuel Cryocoolers

You can increase

the power of the stator

Superconducting rotor

Superconducting magnets are 10 times stronger than conventional

World record: **17.7 T** University of Cambridge [A Patel et al. 2017 arXiv]

ASUMED

Funded by the

European Commission Grant No 723119

ASuMED Goals of project Why superconductors Consortium Our role

Your future Horizon 2020 project

Advisory board

Funded by the European Commission Grant No 723119

AIRBUS

Advisory board

AIRBUS SIEMENS

OSWALD Elektromotoren GmbH Project coordinator

45 28 February 2018 Enric Pardo, Institute of Electrical Engineering, Slovak Academy of Sciences

OSWALD OSWALD Elektromotoren GmbH Project coordinator

High performance electric motors

Experienced in superconducting motors

Funded by the European Commission Grant No 723119

Aircraft engines

https://www.rolls-royce.com/products-and-services/civil-aerospace/airlines/trent-7000.aspx#latest-updates

Funded by the European Commission Grant No 723119

UNIVERSITY OF CAMBRIDGE

World record superconducting magnets

DEMACOHighly specialized cryostatsATLAS magnets in CERN

Funded by the European Commission Grant No 723119

[DOI: 10.1016/j.cryogenics.2008.03.010]

Funded by the European Commission Grant No 723119

SuperOx

REBCO Superconducting tape

Karlsruhe Institute of Technology Computer modelling Superconducting tape characterization

Funded by the European Commission Grant No 723119

Aschaffenburg University

Experienced in inverters for Motors

K & S Project Management

Management of Horizon 2020 projects

Institute of Electrical Engineering, Slovak Academy of Sciences

Computer modelling

Stator characterization

ASuMED Goals of project Why superconductors Consortium Our role

Your future Horizon 2020 project

Electro-magnetic modeling of superconducting stator

Superconductors are highly non-linear

Superconductors are highly non-linear

Why our own code?

Programmed in C++

Faster than commercial

Optimized for parallel computing

We do not pay licenses

$$\mathbf{E}(\mathbf{J}) = -\frac{\Delta \mathbf{A}}{\Delta t} - \nabla \phi \qquad \text{for given } \mathbf{E}(\mathbf{J}) = 0$$

are the Euler-Lagrange equations of

$$L = \int_{V} \mathrm{d}V \left[\frac{1}{2} \Delta \mathbf{J} \cdot \frac{\Delta \mathbf{A}_{J}}{\Delta t} + \Delta \mathbf{J} \cdot \frac{\Delta \mathbf{A}_{a}}{\Delta t} + U(\mathbf{J}) + \nabla \phi \cdot \mathbf{J} \right]$$

$$\mathbf{E}(\mathbf{J}) = -\frac{\Delta \mathbf{A}}{\Delta t} - \nabla \phi$$
$$\nabla \cdot \mathbf{J} = 0$$

for given **E**(**J**) relation

$$\mathbf{E}(\mathbf{J}) = -\frac{\Delta \mathbf{A}}{\Delta t} - \nabla \phi \qquad \text{for given } \mathbf{E}(\mathbf{J})$$
$$\nabla \cdot \mathbf{J} = 0$$

are the Euler-Lagrange equations of

$$L = \int_{V} \mathrm{d}V \left[\frac{1}{2} \Delta \mathbf{J} \cdot \frac{\Delta \mathbf{A}_{J}}{\Delta t} + \Delta \mathbf{J} \cdot \frac{\Delta \mathbf{A}_{a}}{\Delta t} + U(\mathbf{J}) + \nabla \phi \cdot \mathbf{J} \right]$$

[E Pardo, J Souc, L Frolek SuST 2015] [E Pardo, M Kapolka J Comp. Phys. 2017]

$$\mathbf{E}(\mathbf{J}) = -\frac{\Delta \mathbf{A}}{\Delta t} - \nabla \phi$$
$$\nabla \cdot \mathbf{J} = 0$$

for given **E**(**J**) relation

are the Euler-Lagrange equations of

Non-linear eddy currents in coils

1 tape

Brandt 1996 PRB

Non-linear eddy currents in coils

1 tape

Brandt 1996 PRB

100 tapes

Pardo 2008 SuST World record

Non-linear eddy currents in coils

Funded by the European Commission Grant No 723119

1 tape

Brandt 1996 PRB

100 tapes

Pardo 2008 SuST World record

Pardo 2016 SuST World record

10 000 tapes

Fully superconducting transformer

1 MVA 11 kV/415 V 3-phase transformer **Roebel cable in low-voltage winding**

Consortium leaded by Victoria University of Wellington

Non-linear eddy currents in transformer

Non-linear eddy currents in transformer

Funded by the European Commission Grant No 723119

70 28 February 2018 Enric Pardo, Institute of Electrical Engineering, Slovak Academy of Sciences

ASuMED

Your future Horizon 2020 project

ASuMED

Your future Horizon 2020 project

Balanced proportion of industry and academy

Balanced proportion of industry and academy

There should not be overlapping

. . .

Balanced proportion of industry and academy

There should not be overlapping

Each partner has a particular task and role Lab test Computer modelling Sample preparation Device design

ASuMED

Your future Horizon 2020 project Joining as partner Create a project as coordinator Project progress

You should be a good partner

Funded by the European Commission Grant No 723119

Coordinator asks: Who do I know that could do this task?

79 28 February 2018 Enric Pardo, Institute of Electrical Engineering, Slovak Academy of Sciences

Coordinator asks: Who do I know that could do this task?

Why should they contact you?

Coordinator asks: Who do I know that could do this task?

Why should they contact you?

Because you are the only one in the world who can do that

Coordinator asks: Who do I know that could do this task?

Why should they contact you?

Because you are the only one in the world who can do that

OR

You are in a long-term collaboration with the coordinator or a very important partner

Be highly specialized

Be highly specialized

Become a world leader of a narrow field

Be highly specialized

Become a world leader of a narrow field

Start collaborations with important labs who already have Horizon 2020 projects

Make presentations in the best conferences worldwide

Make presentations in the best conferences worldwide

Publish regularly in most-read journals

Make presentations in the best conferences worldwide

Publish regularly in most-read journals

Companies: have an exhibitor stand at conferences

Make presentations in the best conferences worldwide

Publish regularly in most-read journals

Companies: have an exhibitor stand at conferences

Do always a good and reliable job!

ASuMED

Your future Horizon 2020 project Joining as partner Create a project as coordinator Project progress

Structural funds are not enough

Structural funds are not enough

All future partners need to know you well

- Structural funds are not enough
- All future partners need to know you well

You could contract a company to do the management

Structural funds are not enough

All future partners need to know you well

You could contract a company to do the management

You take the decisions and lead the research

ASuMED

Your future Horizon 2020 project Joining as partner Create a project as coordinator Project progress

You are in a collaborative project

Funded by the European Commission Grant No 723119

Be collaborative

Constructive attitude is always best

Make tasks for other partners and share them

Make tasks for other partners and share them

Face-to-face meetings: 2-4 times a year

Make tasks for other partners and share them

Face-to-face meetings: 2-4 times a year

Telco meetings: 1-4 times a month

If you make more telcos, you need less face-to face meetings

Reporting to the European Commission

Annual reports

- Research
- Financial

Reporting to the European Commission

Funded by the European Commission Grant No 723119

Annual reports

- Research
- Financial

Deliverables:

Report Sample Prototype Database

. . .

Reporting to the European Commission

Funded by the European Commission Grant No 723119

Annual reports

- Research
- Financial
- **Deliverables:**
 - Report Sample Prototype
 - Database
 - •••

Milestones

Reporting to the European Commission

Funded by the European Commission Grant No 723119

Annual reports

- Research
- Financial
- **Deliverables:**
 - Report Sample
 - Prototype
 - Database
 -

Milestones

Midterm report

Report and meeting between

European Commission officer Coordinator Optionally: the most importnat partners

Report and meeting between European Commission officer Coordinator Optionally: the most importnat partners Go or no-go decision from the officer

Report and meeting between European Commission officer Coordinator Optionally: the most importnat partners Go or no-go decision from the officer You really need to do the work

I wish that your new project will take off soon!

Funded by the European Commission Grant No 723119

Thank you for your attention!

Would you like to know more?

http://asumed.oswald.de