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Abstract: We study methods to design a private charging infrastructure for a fleet of electric
vehicles, for example taxicabs, small vans (used in the city logistics) or shared vehicles. In
this contribution, we continue our previous work, where we suggested an MIP model of this
location-scheduling optimization problem. We introduce an IP model and simplify it using
flows in networks. We suggest an algorithm that finds a feasible solution. We also use the flow
version to answer the question from our previous work: What is the cause of the gap in the
number of feasible vehicles obtained from the optimization problem and evaluation procedure?
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1 INTRODUCTION

In [2], we suggested and solved an MIP model for the location-scheduling optimization problem
to design private charging infrastructure for electric vehicles. In the extended version [3] of the
above mentioned paper, we modified this model and added a procedure which simulates the
vehicle charging in specific cases, when drivers operate with incomplete information. The tests
have been carried out using real data based on activities of taxicabs in Stockholm. We found
out that there is a large gap in the number of feasible vehicles obtained from the solution of the
mathematical model and the number of feasible vehicles that form an output of the evaluation
procedure. The above mentioned model from the work [3] is in Figure 1.

Here, [ is the set of candidate locations, where it is possible to place the charging infras-
tructure. 7' is the set of non-overlapping time intervals. The fleet is represented by the set
of vehicles C. Vehicles have battery with capacity 8 (measured in kilometres) and s is the
charging speed. R. is the ordered sequence of parking events of vehicle ¢ € C' and N, is the
list of intervals that overlap with the parking event r € R.. The fraction of the interval t € T,
when the vehicle ¢ € C' is parking, we denote by a.: € (0,1). Bjc = 1 when the vehicle ¢ € C'

Model formulation

Minimize Z S; (1)

iel
subject to Z BiteTer < i foriel,teT (2)
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deo < 0‘5 (3)
der + Z acxets < B force C,r € R.U{r.} (4)
teNC,'V‘
der < dep—1 — Uer + Z At TetS force C,r € R.U{r.} (5)
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Figure 1: Mathematical formulation of the location-scheduling optimization problem.
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| 1542 vehicles

Prmag | Mpin | Model | Strategy 1 | Strategy 2
100 | 800 609 401 363

150 1186 652 536

100 1287 689 586

500 | 800 1102 592 589

150 1442 653 603

100 1475 709 695

1000 | 800 1347 739 692
150 1499 785 701

100 1510 793 706

Table 1: Numbers of feasible vehicles, obtained from the mathematical model and the charging
simulation procedure.

parks at location ¢ € I during the time interval t € T, and Bj;. = 0 otherwise. Vehicle ¢ € C
drives u., kilometres while driving from the parking event r — 1 to the parking event r. We
work with the following variables: s; € Zar represents the number of charging points placed
at the location ¢ € I; x4 € {0,1}, where x4 = 1 when vehicle ¢ € C' is charged during the
time interval ¢ € T and z. = 0 otherwise; and d.. > 0 is the distance that the vehicle ¢ € C
is able to drive at the beginning of the parking event r» € R.. In the objective function (1),
we minimize the number of located charging points. Constraints (2) ensure that we cannot
simultaneously use more charging points in each time interval than is the number of all existing
charging points. Constraints (4) ensure that battery capacity is not exceeded and constraints
(5) ensure the contiguity of charging and discharging of batteries.

In the charging procedure, we process events in ascending order with respect to their time
of occurence. If we have a parking event, then we assign to the vehicle associated with this
event a specified charging point according to the chosen strategy. Strategy 1 assigns to each
vehicle a free charging point that allows charging to the maximum capacity. Strategy 2 assigns
to each vehicle the first available charging point that is free.

The results of the comparison for one selected week can be seen in Table 1.

Where ppq. 18 the maximum acceptable distance of a vehicle from a charging station, M, is
the least number of parking events in a location to be acceptable as a candidate for a charging
station. In the remaining three columns, we have the numbers of feasible vehicles, which we
obtain as results of optimisation (Model) and the charging evaluation procedure (Strategy 1,
Strategy 2). More results and detailed description can be found in [3].

2 DISCRETE MODEL

In this section, we present a discrete version of Model 1. For technical reasons, we omit the
constraints (3) and values a.,. Variables d., should be from the set Zar of non-negative integers.
The model is in Figure 2 and the example can be seen in Figure 3, where t1,...,t; are time
intervals, 71,19, 73 are candidate locations and c¢;, ¢y are vehicles.

3 SIMPLIFICATION

The discrete model from the previous section is a basis for the reduction that is presented here.
We need to state several constraints to obtain a model that will help us to answer the question
about the gap in the number of feasible vehicles in the columns in Table 1. The ordered set
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Model 2 - discrete model formulation

Minimize Z S; (6)
i€l

subject to Z BiteTer < 8; foriecl,teT (7)
ceC
der + Z Tes < fB forc€ C,r € R.U{r.} (8)

teNc,T
dey < dey—1 — Uer + Z TerS force C,r € ReU{r.} (9)
teNc,‘r—l

Figure 2: Discrete version of the location-scheduling optimization problem.
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Figure 3: Diagram illustraiting parking events and movements of vehicles.

of all time intervals T' = {1,2,...,n} is partitioned into subsets T,q; of all time intervals on
odd positions and T.,e, of all time intervals on even positions. We suppose that each parking
event and journey of the vehicle takes one time interval. The parking events are in even time
intervals and journeys are in odd time intervals. We also suppose that at most one charging
point can be placed in each candidate location. These restriction can be expressed in Model 2
as follows: s; € {0,1}, s =1, uc, € {0,1}, N, = {2r}, B+ and z.; can be equal to one only
in cases t € Teyen. We call this simplification: Model 3, and we show that it is equivalent to a
specific network flow model (explained below).

We construct a network GG which represents the situation described above. The set of ver-
tices of (G is the union of the sets
Vi ={vy 11 € C,t € T}, where vy represents the vehicle 7 in time ¢,
Vo =A{uy 11 € 1,t € Teyen} U{wiy : @ € I,t € Teyen}, where u; and wy; represent the candidate
location 7 in time t,
V3 = {s, z,w}, where s is the source, z is the sink and w an additional vertex of the network.

The set of edges is the union of the sets
Ei ={(vig—1,vip) i€ Cit € T —{1}} U{(vin, 2) : 1 € C},

By = {(uir—2,uir) 21 € I, € Topen — {2}},
Es = {(uit,wit) 11 € I,t € Tepent,

Ey = {(wig,vj4) 11 € I,t € Topen,j € C, Biyy = 1},
Es = {(vit,w) i€ C,t € Toaqt,

Es ={(s,vi1) 11 € C},

By ={(s,uiz2) 11 € I},
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| B (0,8) || Es| (B.6)
Es ‘ 0 |Teven| ” Er ‘ <07 |Teven|>
Es |  (0,1) || BEs | (0,|Tevenl)
Ey ‘ <07 1> ” Eq ‘ <O7OO)
ES ‘ <171>

Table 2: Lower and upper bounds for the flows on edges.

Eg = {(uim, 2) 11 € I,m = max(Tepen) },
Ey = {(w, 2)}.
Every edge has assigned to it a lower and upper bound for the flow, which are represented by
the interval (I,u). These bounds are given in Table 2
The optimal solution of Model 3 is equivalent to the feasible flow in G with the minimum
number of non-zero flows on the edges of the set E;. If the flow on the edge (s,u;2) € E7 is
non-zero, then we place a charging point in location . Problems of finding a feasible flow in
the network with lower bounds on edges and its minimisation are solvable in polynomial time
[1].
We can use the following algorithm to obtain the solution with fewer edges from E; with
non-zero flow.
Description of the algorithm. We construct a network G’ (it is subnetwork of G):
Its vertex set is Vi U V4 U V4, where
Vi={vi :ieCiteT—{1}}U{z},
Vi =Auip i € 1,t € Tepen} U{wiy 11 € I,t € Tppen}-
The edge set is the union of the sets:
Ei = {(vi,t_l,v@t) ieCiteTl — {1,2}} U {(vi,n,z) NS C},
Eé = {(ui,t_g,ui,t) 1 €1t € Topen — {2}},
Ef = {(ui,wiy) 11 € It € Tepent,
Ezll = {(wi,t,vj,t) 21 €1t € Teyen,J € C, Bi,t,j = 1},
EL = {(uim,z) 11 € I,m = max(Teyen)}-
Lower and upper bounds of the edges are taken from G.

Algorithm.

Input is the network G with feasible flow z and subnetwork G’.

For each pair of vertices u;2,u;2 € Vo such that 0 < (s, u;2) < x(s,uj2) < |Teven| do:
— while there is an augmenting path P(j,7) with reserve r from w2 to u;2 in G’ do:
— — add the edges (s,u;2) and (s,u;2) to P(j,7) to form a (non-oriented) cycle
— — C = (s5,u52,...,U2,5),

— — change the flow z in C as follows:

— — if (u,v) is the forward edge in C, then z(u,v) = z(u,v) +r,

— — if (u,v) is the reverse edge in C, then x(u,v) = z(u,v) —r,

— process another pair of vertices.

A polynomial algorithm for finding an augmenting path in network is presented in [4].
This approach does not guarantee that given solution is optimal. We aim to test the algorithm
and study its properties in our future works.

Example 1.

Situation with two vehicles, two candidate locations and five time intervals can be seen in
Figures 4 and 5.
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Figure 5: Network from Example 1, |Tepen| = 2.

Question: What is the cause of the gap in the number of feasible vehicles obtained from the
optimization problem and simulation procedure?

We suppose that the main reason is in the available information. When we use an optimization
algorithm, we work with the whole network G. However, in the simulation procedure, at time
t € Teyen, we only have information about edges from vertices w;;. These constraints do not
allow us to find an optimal solution by the evaluation procedure. The open questions are: How
do we design the charging infrastructure to be more succesful especially in cases where the
constrained level of information is given? How can we spread the available information (from
O-D matrices, probability models) to obtain a lower number of unfeasible vehicles?

4 CONCLUSIONS

The main idea of the work is the representation of the simpler version of Model 2 that works
with flows in networks. In this approach, we obtain the optimal solution when we find the
feasible flow with the minimum number of non-zero flows on the input edges.

We suppose that this approach will allow us to study the role of the available information
in the charging process. For example, with this model, we are able to explain the gap between
the results of optimization and the simulation procedure, which can be seen in Table 1. In
optimization, we have all the information about the network. In the eveluation procedure, we
have only the information on neighbourhoods of vertices that have actually been processed.
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Our plan is to use this flow model to evaluate the dependency of the level of information about
available charging points and suggest an appropriate system of assigning the jobs (journeys)
and free charging points for vehicles.
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