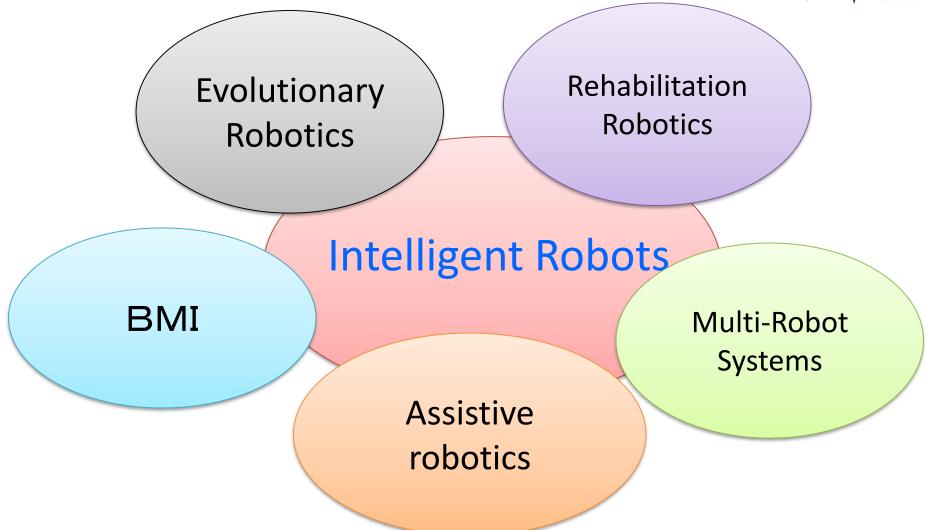


Research on Intelligent Robotic Systems at Hosei University

Genci Capi Human Assistive Robotics Lab Department of Mechanical Engineering Faculty of Science and Engineering Hosei University Tokyo, Japan capi@hosei.ac.jp

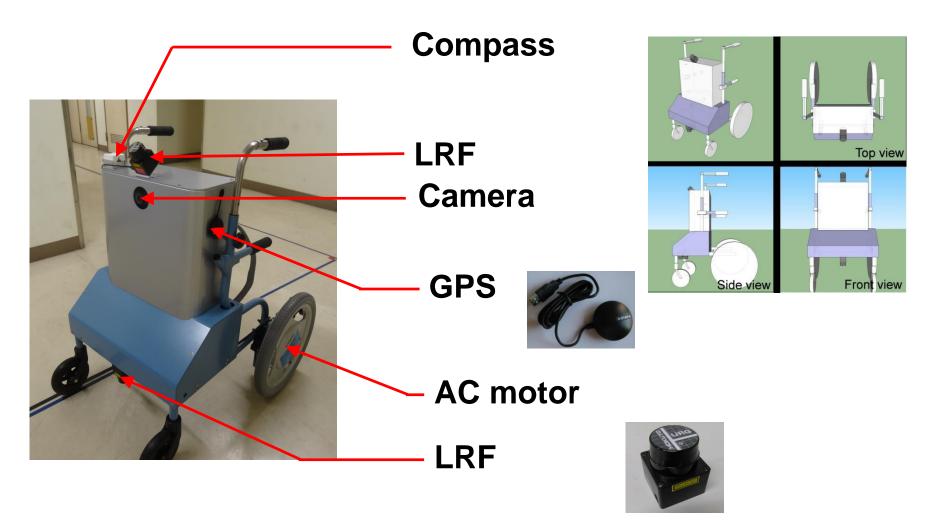


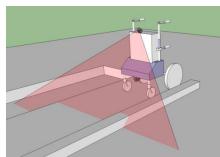
Guide robot for visually impaired people

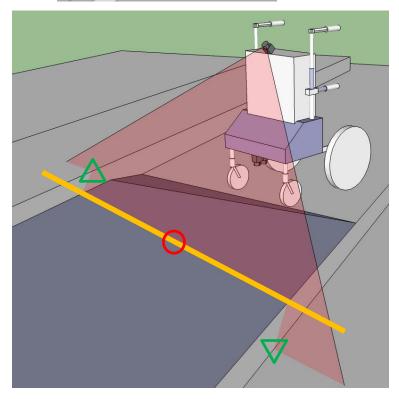
Introduction

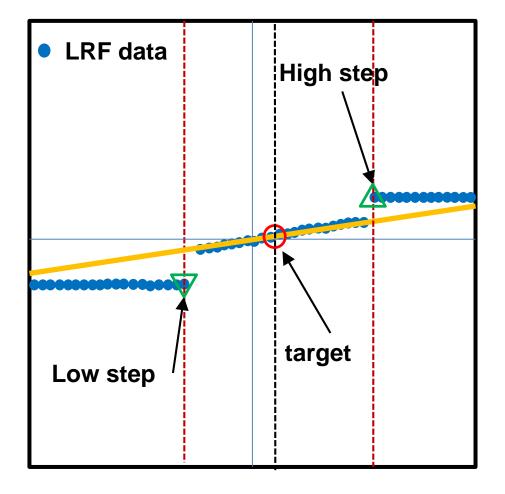
- Most of visually impaired people lost their sight in the elderly age.
 - Difficult to learn to walk with the long cane or the guide dog
 - not so rich in the auditory and haptic sensing and have not good memory for the cognitive map.
- Development of a mobile robot that operates in
 - Assistive mode
 - Guide mode

Robot hardware

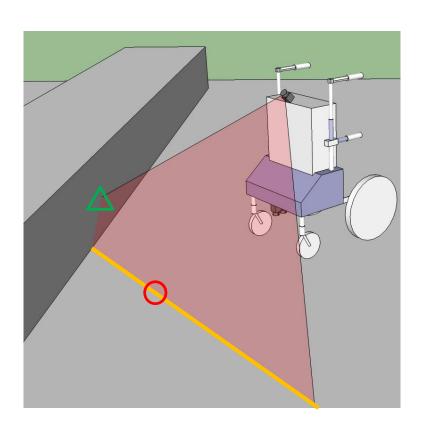


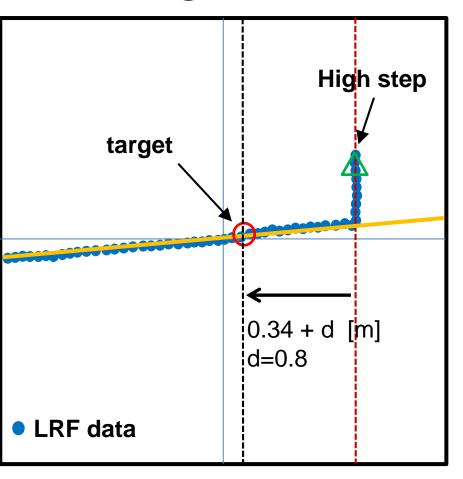




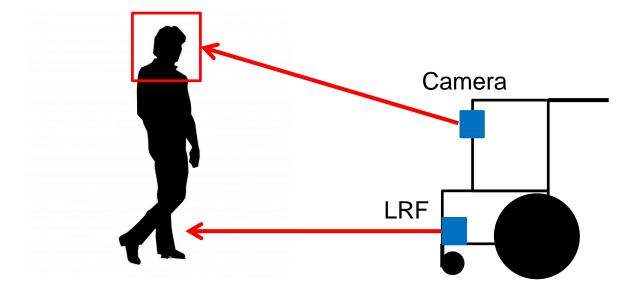


One side step recognition

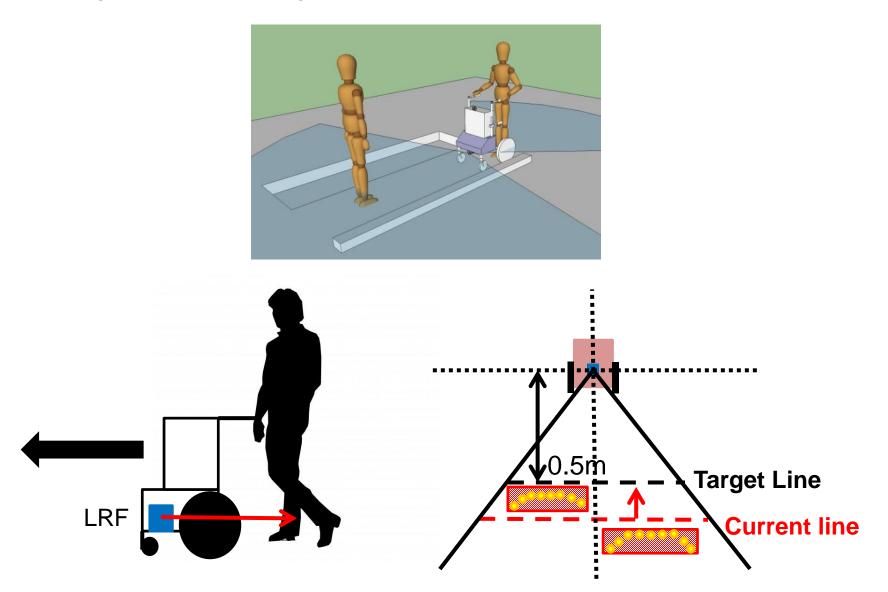




Pedestrian recognition



Speed adaptation based on LRF data



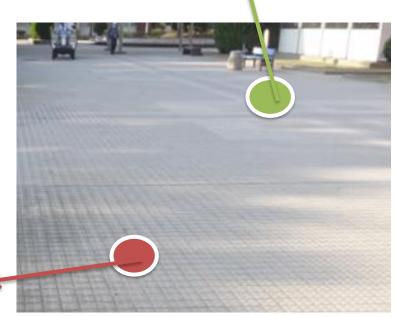
Open squares

 $\Delta Longitude = G_{Lon} - R_{Lon}$

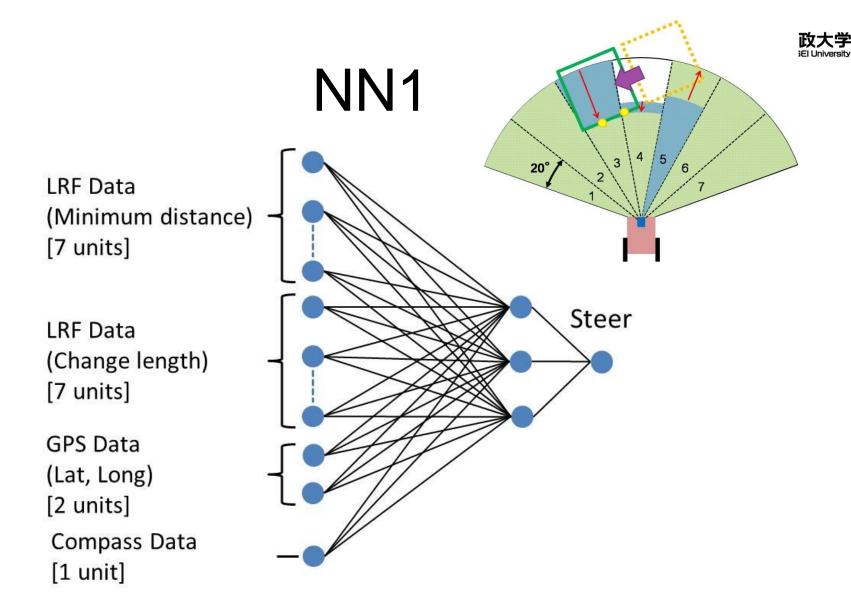
 Δ Latitude=GLat-RLat

R:Guide Robot G:Goal Location

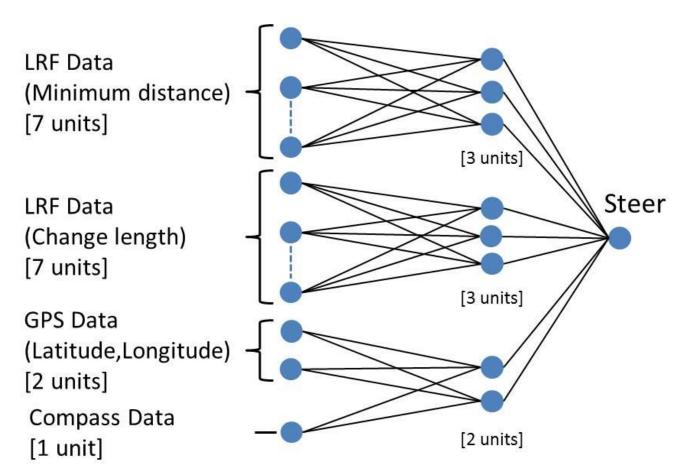
Robot location



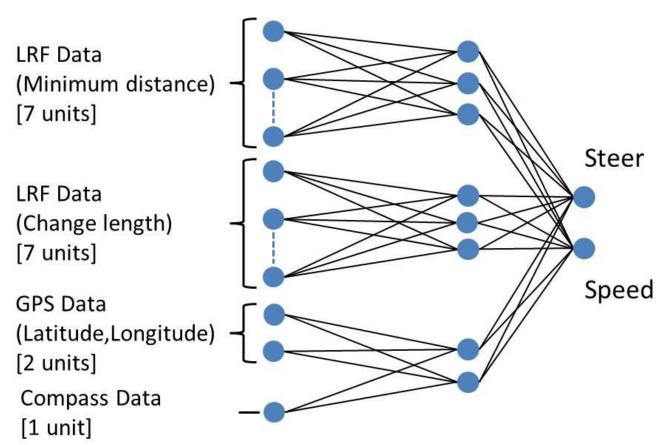
Goal



Genome length:54

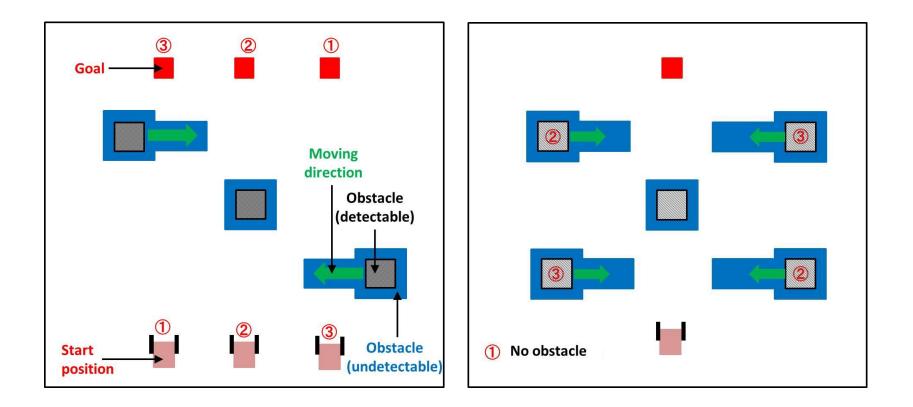


Genome length 56

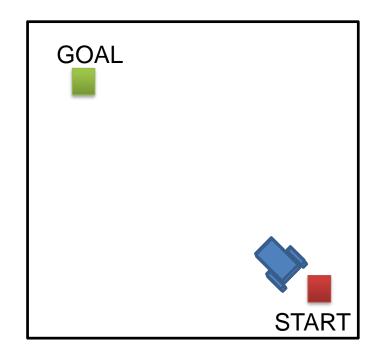


Genome length 64

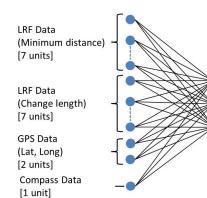
Environments



Evolution of NN

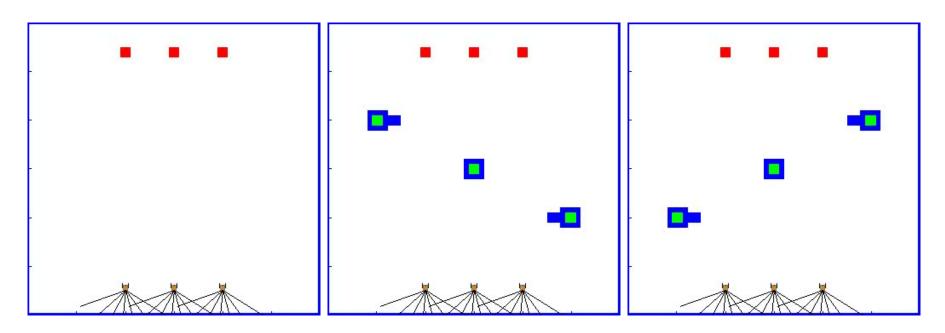


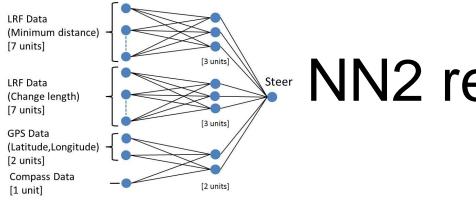
 $f = \sqrt{(goal_x - robot_x) + (goal_y - robot_y)} + number_of_steps$



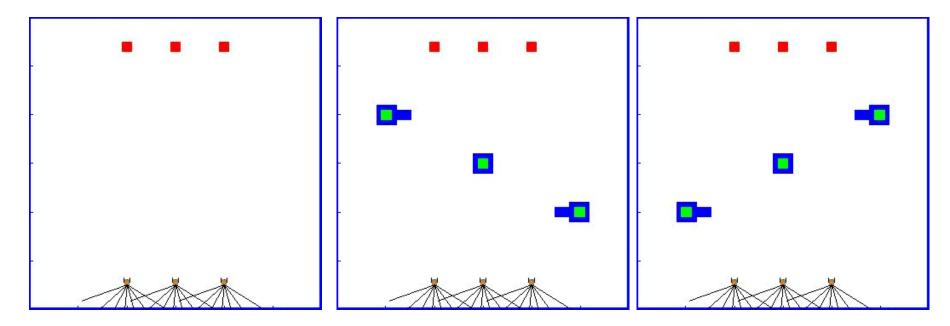
Steer

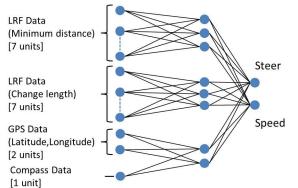
NN1 results



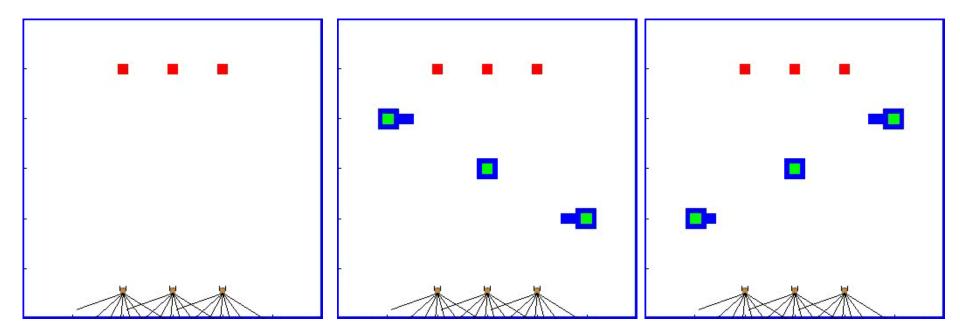


Steer NN2 results

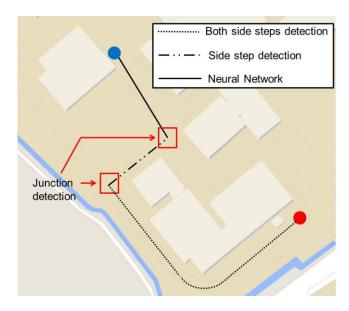


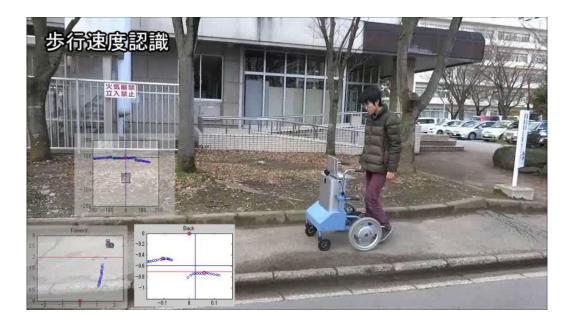


NN3 results



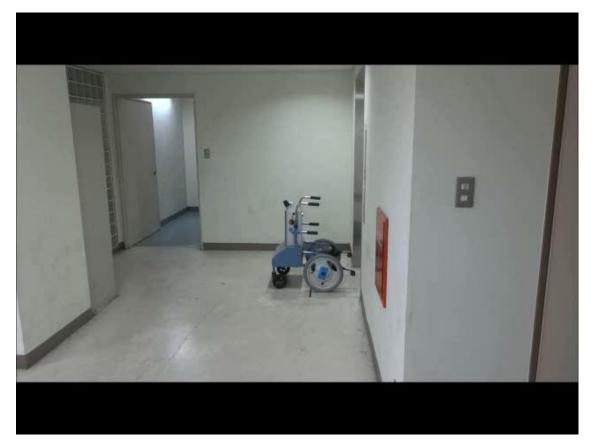
Experimental results





Indoor navigation

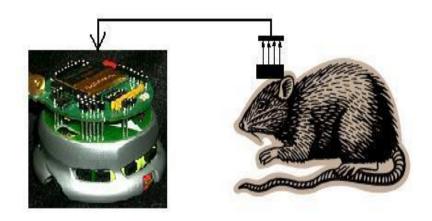
Experimental results

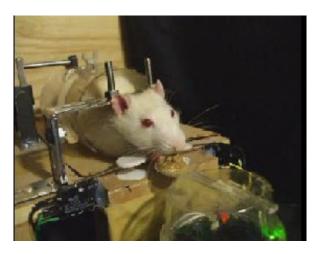


BMI

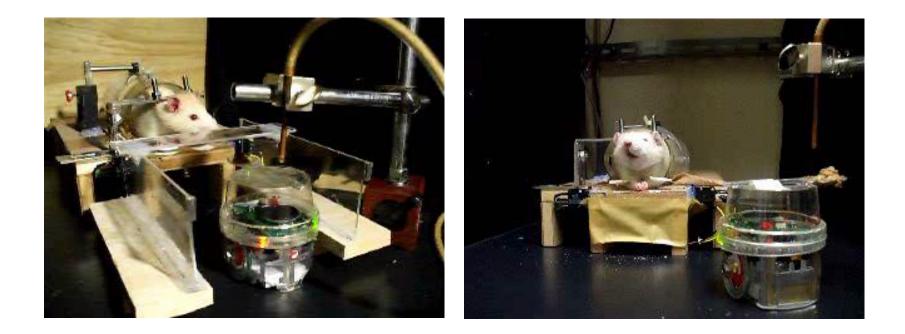
Goal

- •Using brain signals to control the robot
- •Building biologically motivated neural controllers

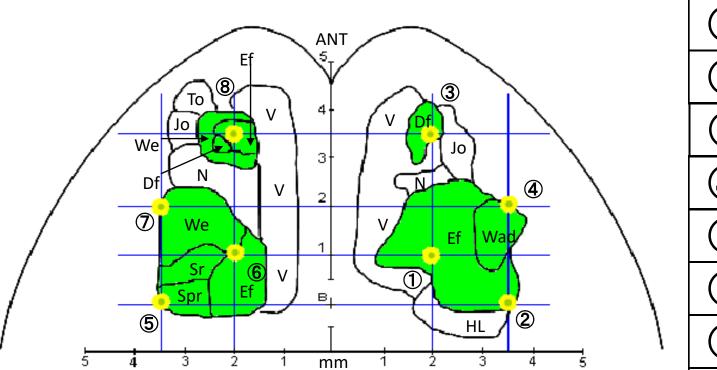


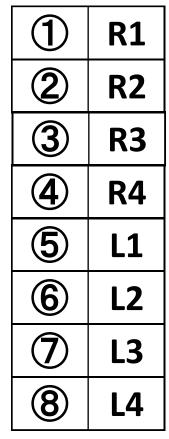


Rat learn to press the appropriate lever to get food

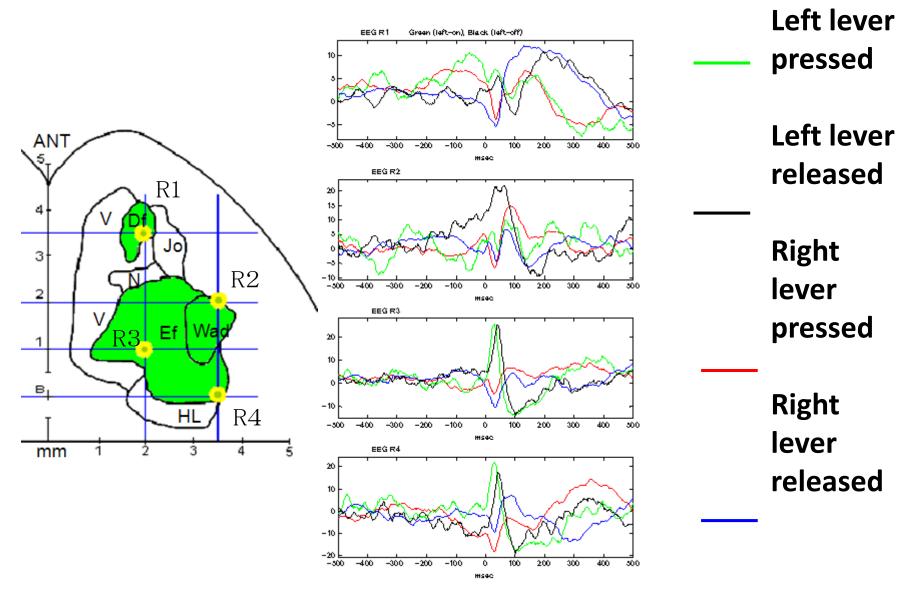


Electode position in rats brain

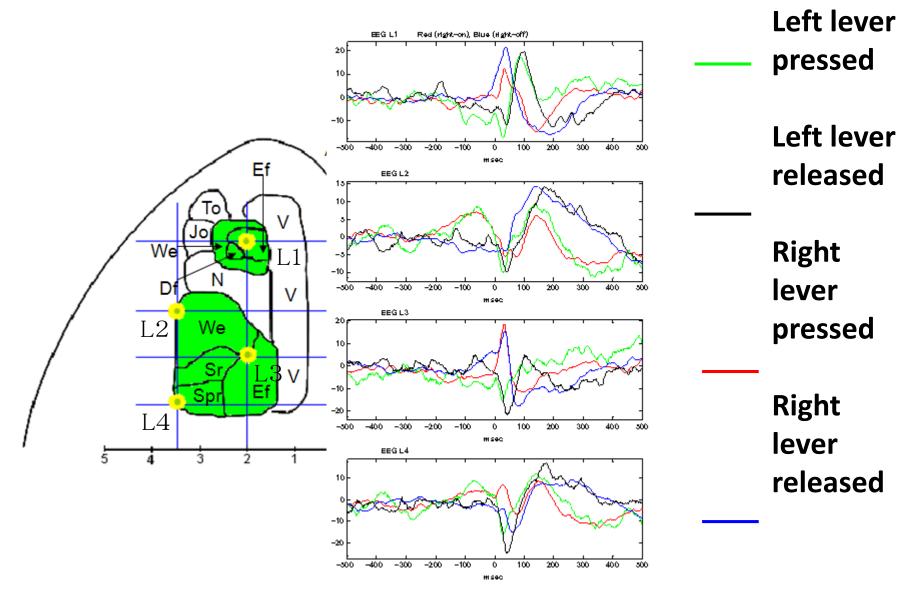




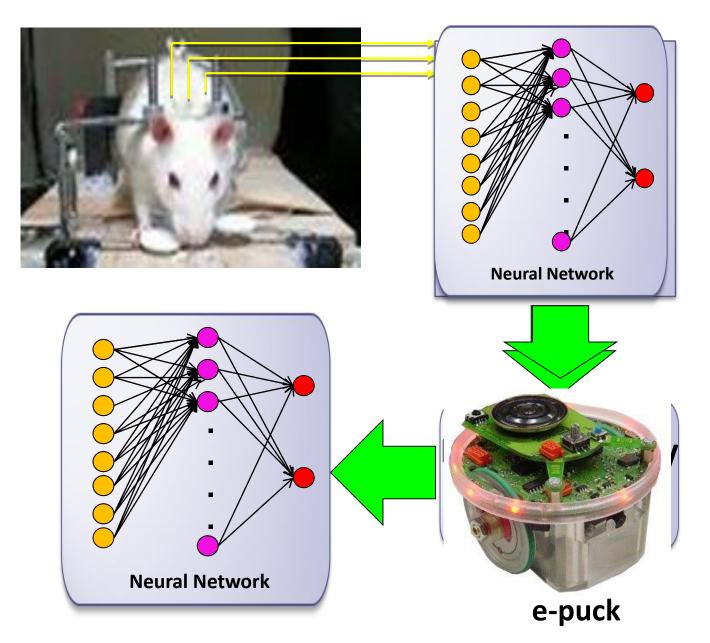
Brain signals



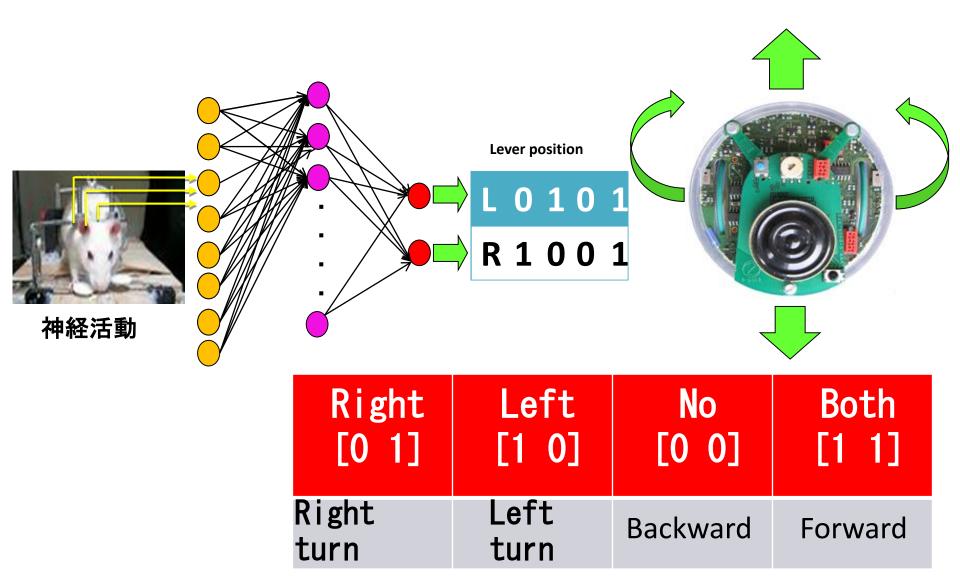
Brain activity



Training NN based on brain signals Mathematical Kathematical Kathemat

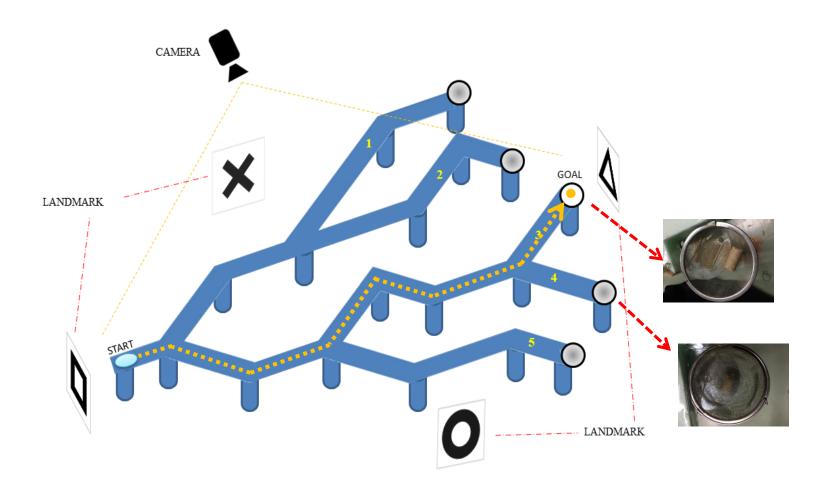


Robot motion generated by NN^{本政大学}

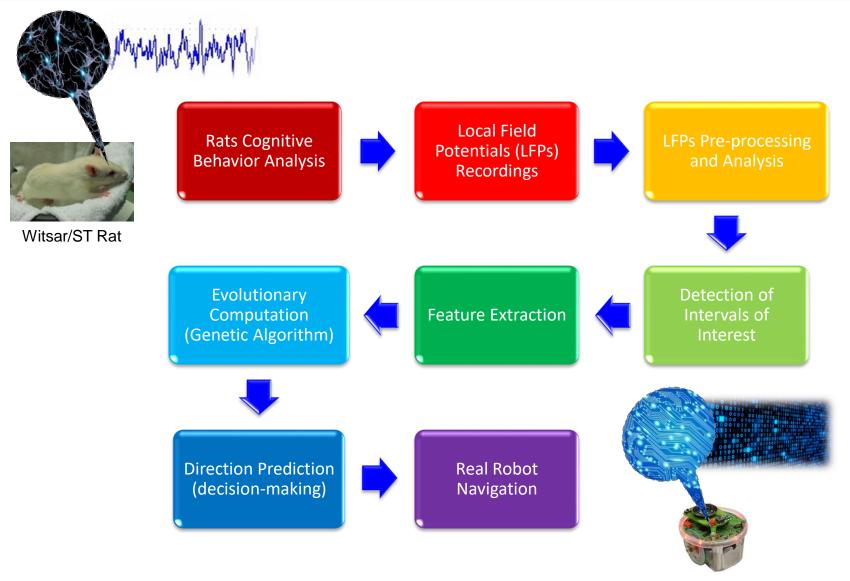


Training environment

• Novel multiple Y-maze



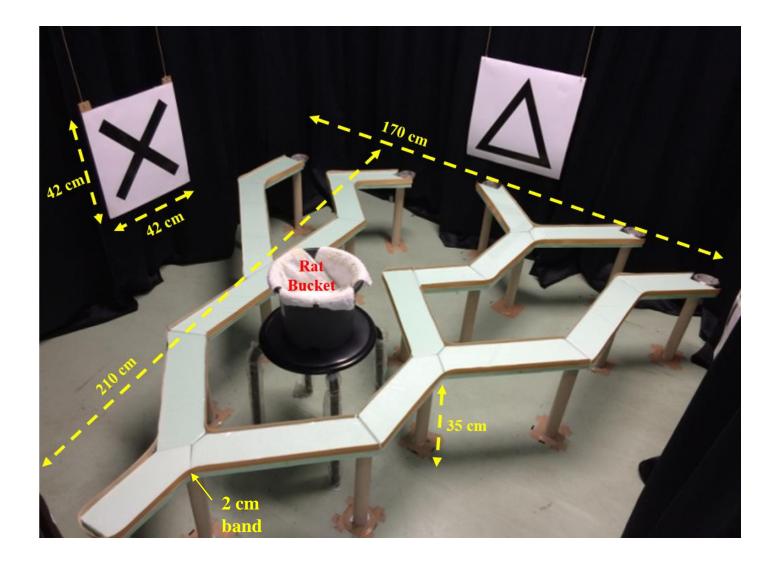
METHODOLOGY



8

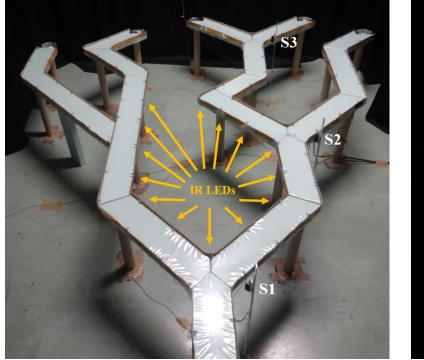
e-Puck Robot

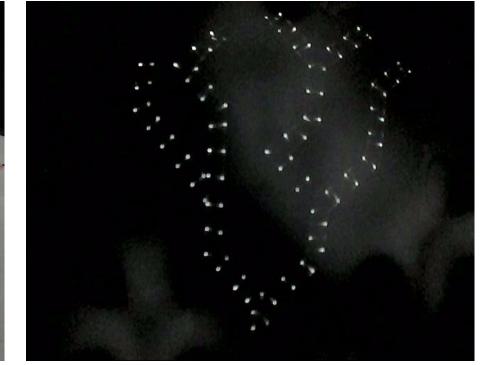
Rat training environment



Rat training environment

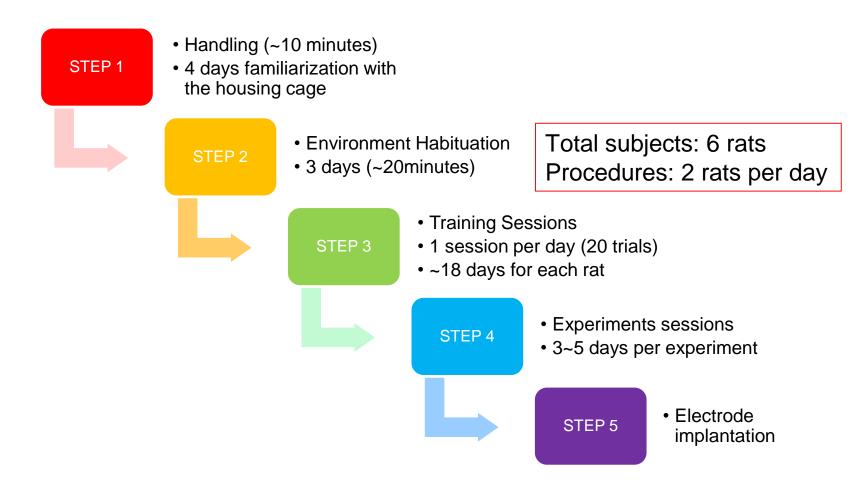
- 96 Infrared Light Emitting Diodes



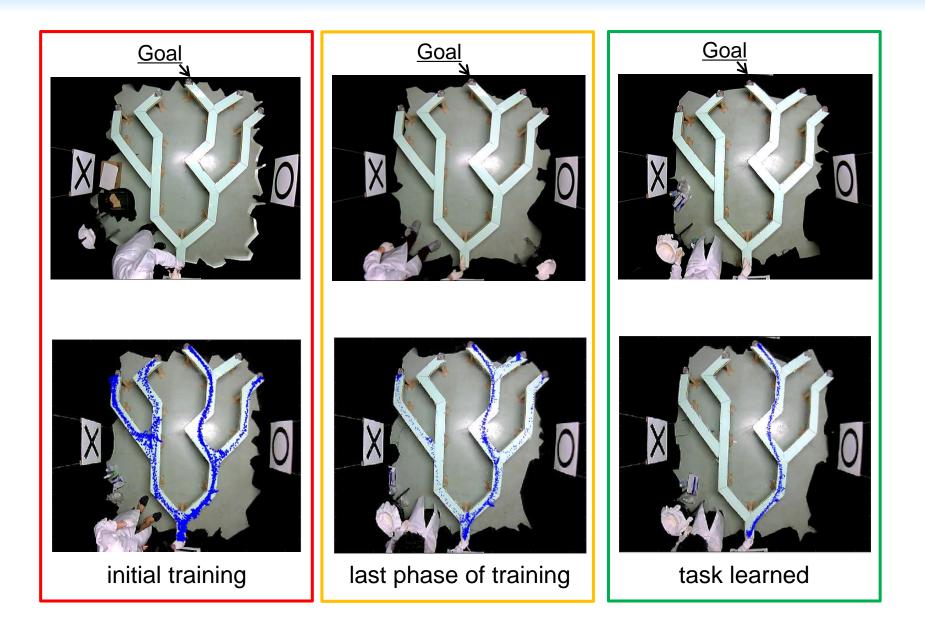


- 3 distance sensors S1, S2, S3, in each Y- junction of the maze.
- Distance sensor model GP2Y0A21YK0F

All the procedures were approved by the University of Toyama Committee on the Animal Care and were in accordance with the National Institutes of Health guidelines for the Care and Use of Laboratory Animals.



Rat learning progress



Training criterion & Performance evaluation

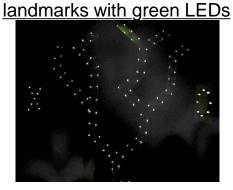
- Rats are trained in a lighted environment until they reached an asymptotic level of learning with a criterion above 85% correct choices.
- Learned behavior is tested in different experiments, under different changes of the environment settings.
- Analyzed the rats' behavior and strategies while it navigates in a multiple Y-maze.

dark environment

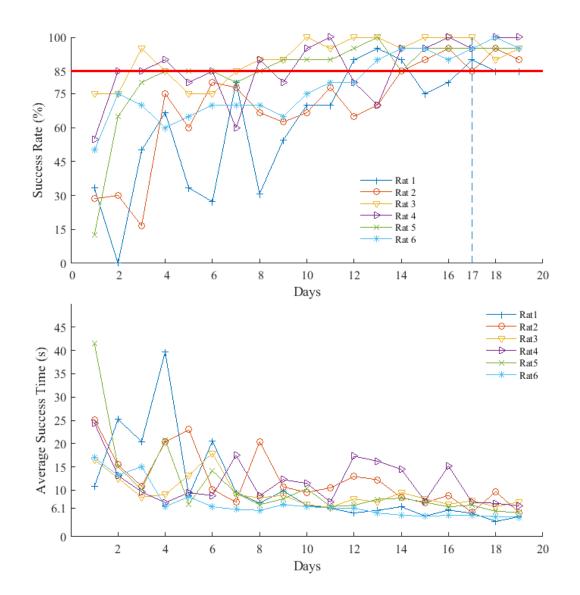
<u>red light</u>

Rat's learning performance:

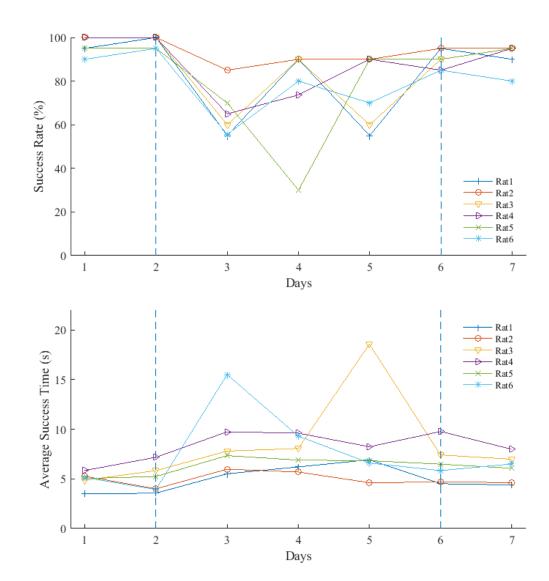
- percentage of success rate
- time to reach the target food location.



BEHAVIOR RESULTS (Lighted Environment)



BEHAVIOR RESULTS (Dark Environment)

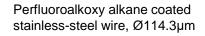


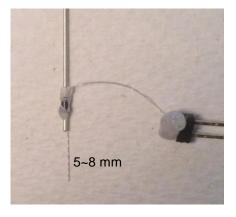
Electrodes implantation

> 3 bipolar twisted electrodes per rat

Coordinates	HPC	STR
AP – Antereo Posterior	- 4.92 mm	+0.96 mm
ML – Medio Lateral	± 2.5 mm	-3.6 mm
DV – Dorso Ventral	-2.3 mm	-3.5 mm

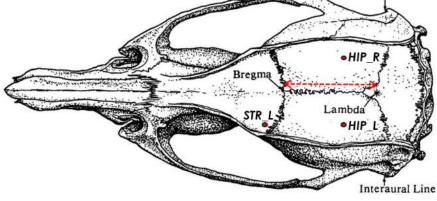
* Relative to bregma



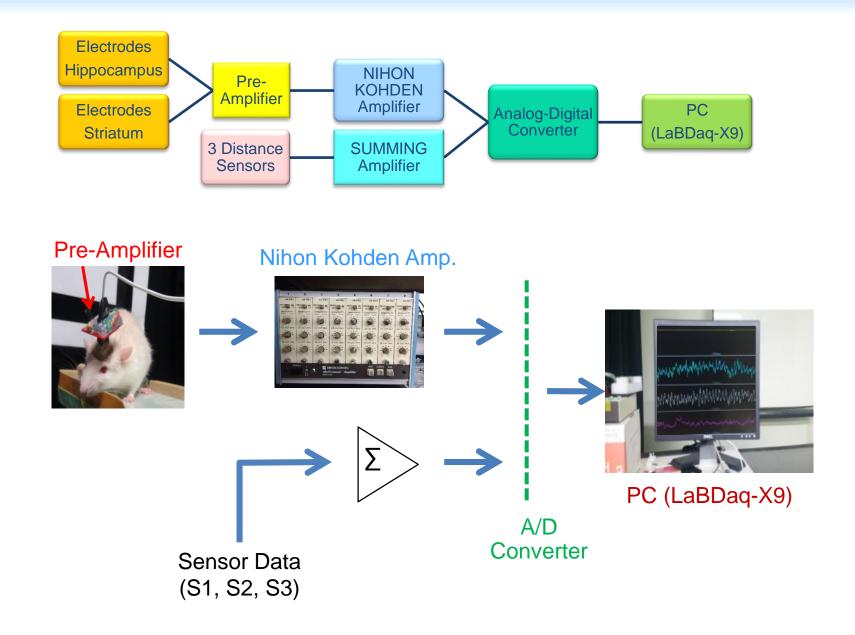


Stereotaxic instrument

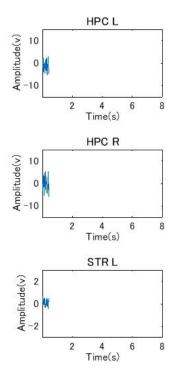
Rat skull

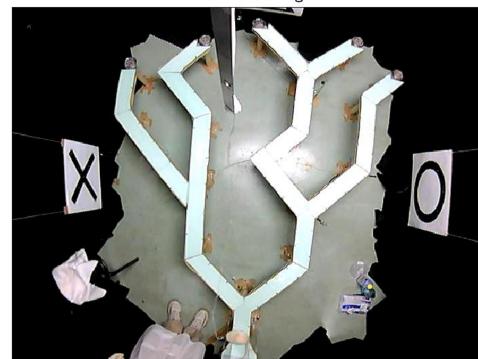


Data acquisition system



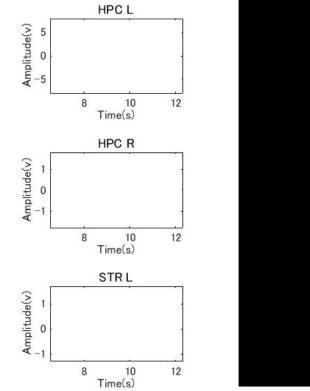
LFPs recording experiment



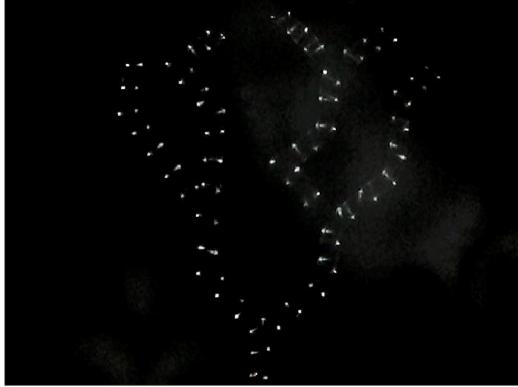


LFP Recording

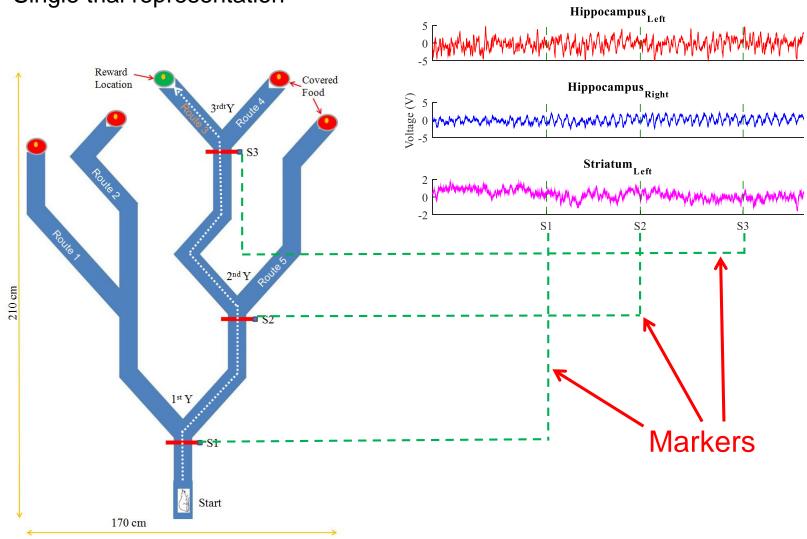
LFPs recording experiment



LFP Recording

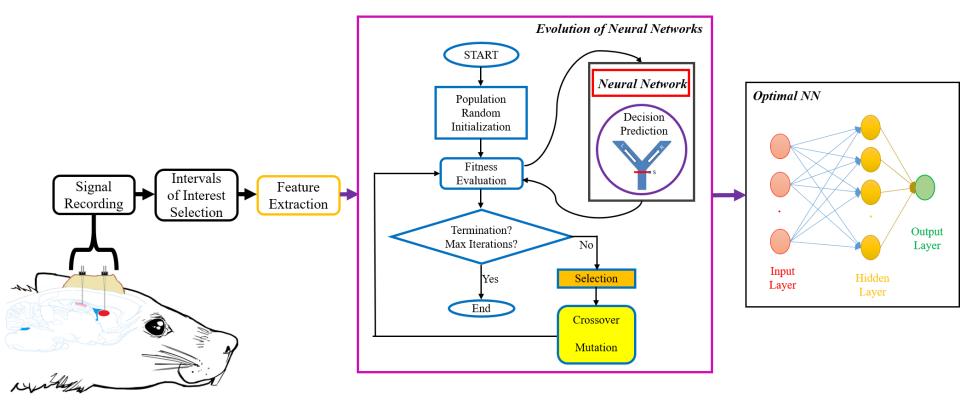


Raw LFPs

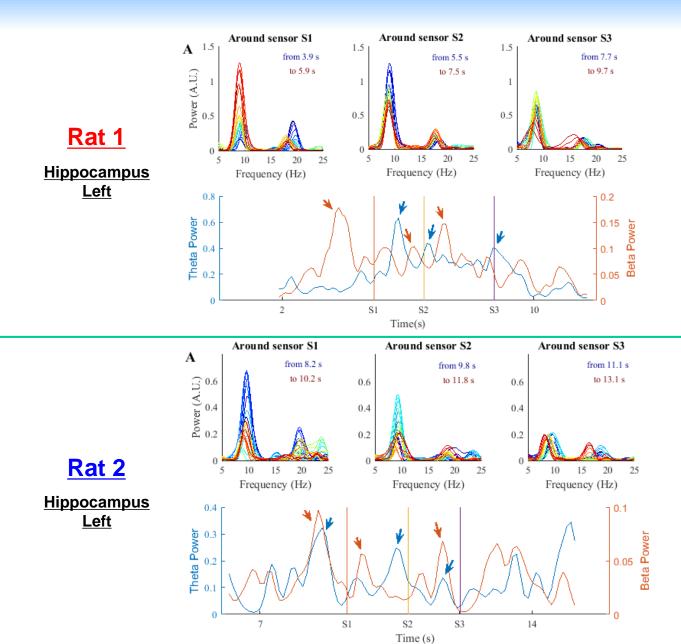


• Single trial representation

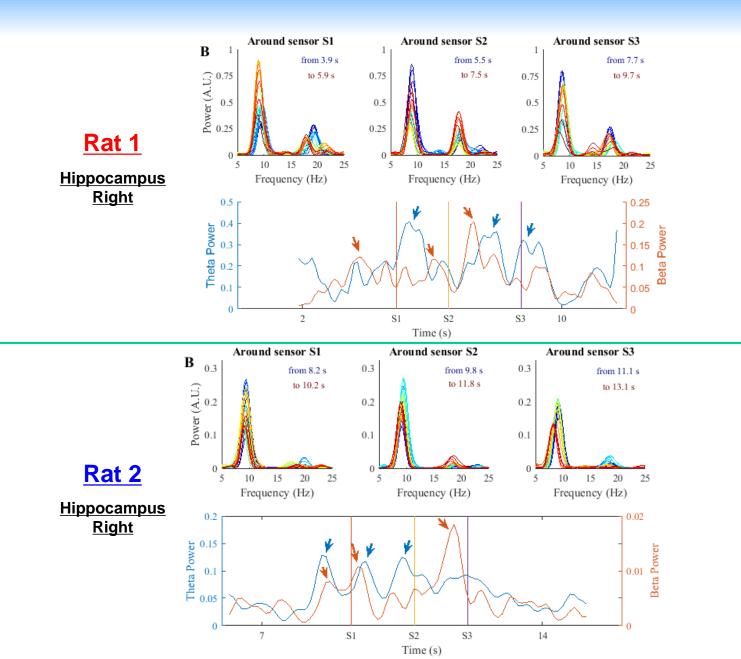
Flowchart of the proposed method



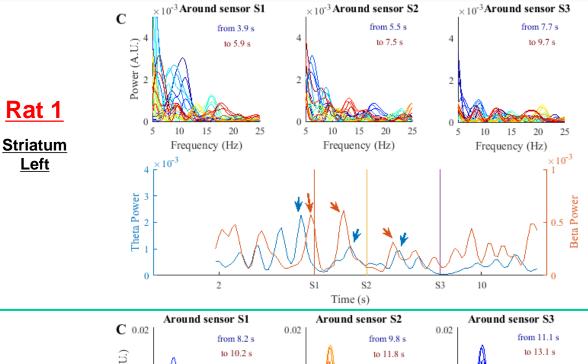
Brain activity analysis (Channel 1)

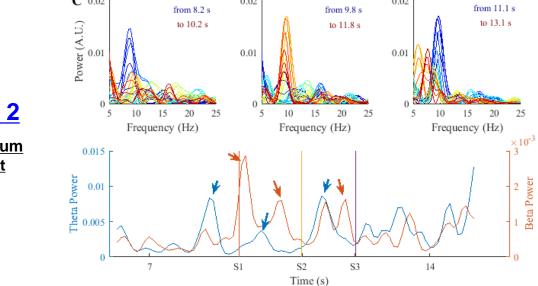


Brain activity analysis (Channel 2)



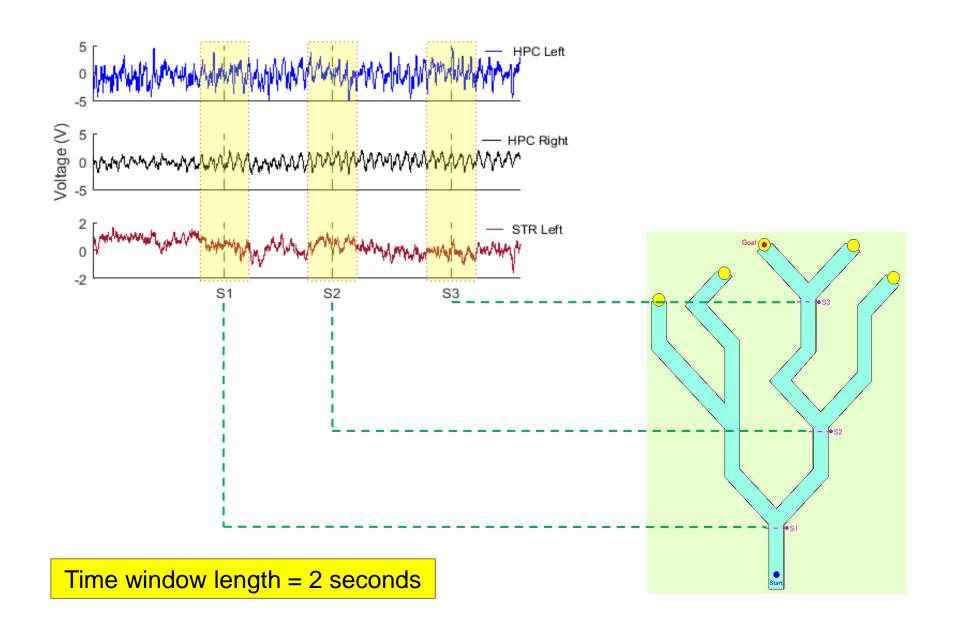
Brain activity analysis (Channel 3)





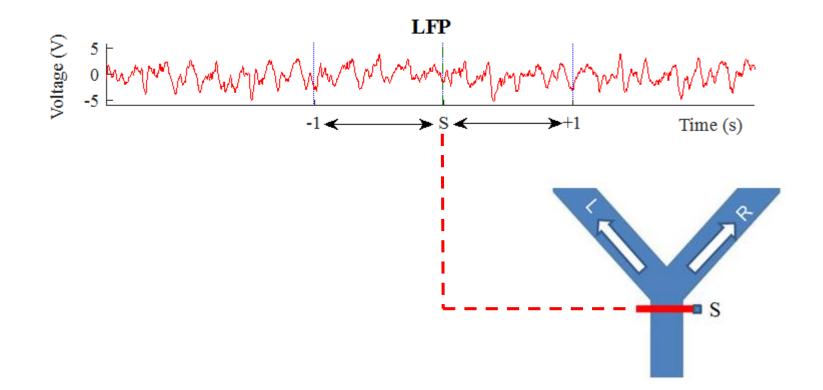
<u>Rat 2</u>

Signal's intervals of interest



Feature extraction time window

2 seconds time window length: 1 second before and after the turning point.



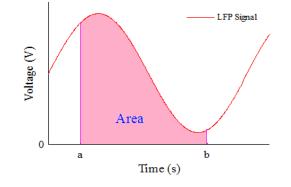
Selected features

1. Area

$$A = \frac{\sum_{i=1}^{W} |x_i|}{W}$$

2. Average peak amplitude

$$PA = log_{10} \left(\frac{\sum_{i=1}^{P} x_{P(i)}^2}{P} \right)$$



3. Average valley amplitude

$$VA = log_{10} \left(\frac{\sum_{i=1}^{V} x_{V(i)}^2}{V} \right)$$

4. Line length

$$L = \sum_{i=2}^{W} |x_i - x_{i-1}|$$

5. Mean energy

$$\mathbf{E} = \frac{\sum_{i=1}^{W} |x_i^2|}{W}$$

6. Normalized decay

ND =
$$\left| \frac{\sum_{i=1}^{W-1} I(x_{i+1} - x_i < 0) - 0.5}{W - 1} \right|$$

Selected features

7. Normalized peak number
$$N_P = P\left(\frac{\sum_{i=1}^{W-1} |x_{i+1} - x_i|}{W - 1}\right)^{-1}$$

- 8. Number of peaks
- 9. Number of valleys
- 10. Peak variation

$$PV = \frac{1}{\sigma(PV)\sigma(x_{PV})}$$

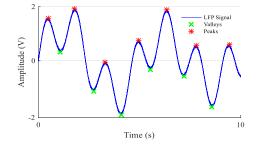
11. Power of beta frequency band

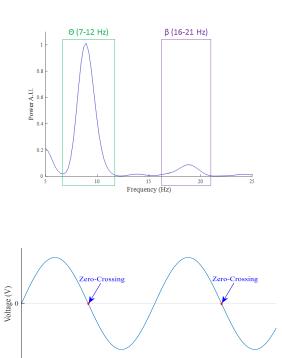
12. Power of theta frequency band

13. Root mean square

$$RMS = \sqrt{\frac{\sum_{i=1}^{W} x_i^2}{W}}$$

14. Zero crossing

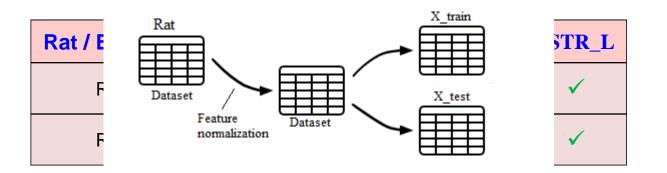




Time (s)

Feature processing

Rat 1 & Rat 2 datasets: **14** extracted features x **3** channels = **42** features



Data was normalized (standardized) with the mean μ = 0 and the standard deviation σ = 1.

<u>Rat 1</u>

315x42 dataset is divided in:

 $R1X_{train} = 267$ training data (85%) $R1X_{test} = 48$ testing data (15%)

Rat2

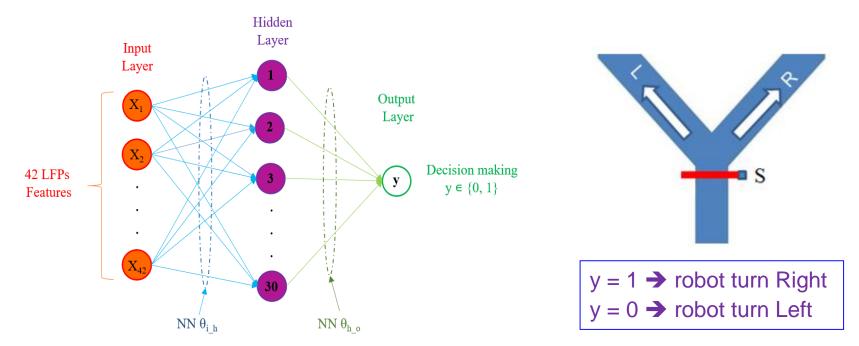
375x42 dataset is divided in:

 $R2X_{train} = 318$ training data (85%) $R2X_{test} = 57$ data (15%)

Neural Network (NN) architecture

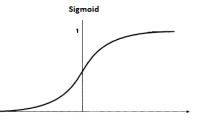
36 法政大学 HOSEI University

> 42 Input neurons, 30 Hidden neurons, 1 Output neuron



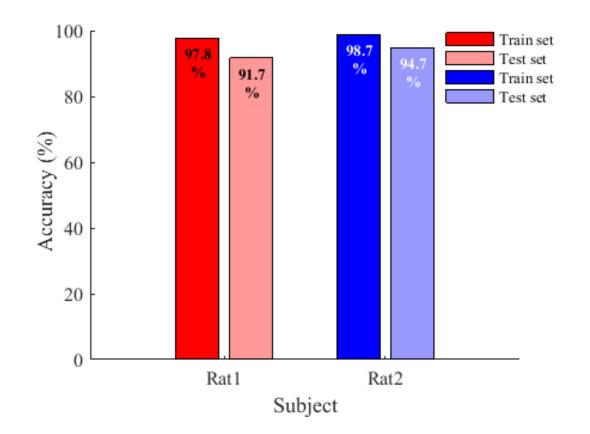
- Feed-Forward NN
- Sigmoid function is used as an activation function for hidden & output units

$$y(i) = \frac{1}{1 + e^{-x(i)}}$$



Results (Prediction accuracy)

Subjects	Number of wrong decisions prediction						
	Train Data	Test Data					
Rat 1	6/267 (97.8%)	4/48 (91.7%)					
Rat 2	4/318 (98.7%)	3/57 (94.7%)					



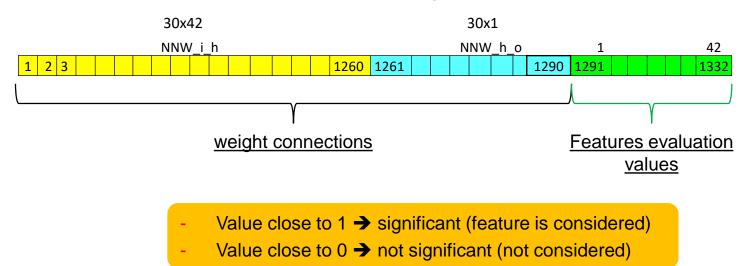
Best features selection

Genetic Algorithm to determine features that mostly contribute to the rat's decision-making (most significance features).

Matrix of Features

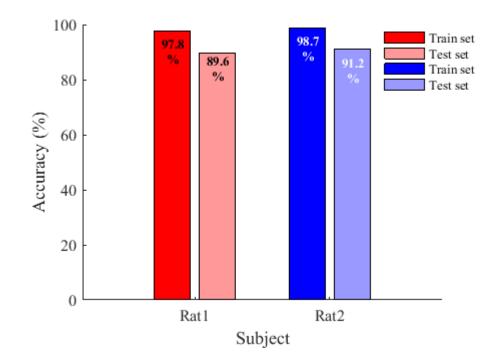
1	2	3	4	5	 	 	38	39	40	41	42	
					 			•••	••••			Data samples 1
					 	 						Data samples 2

<u>Genome of each individual of populations length = 1332</u>

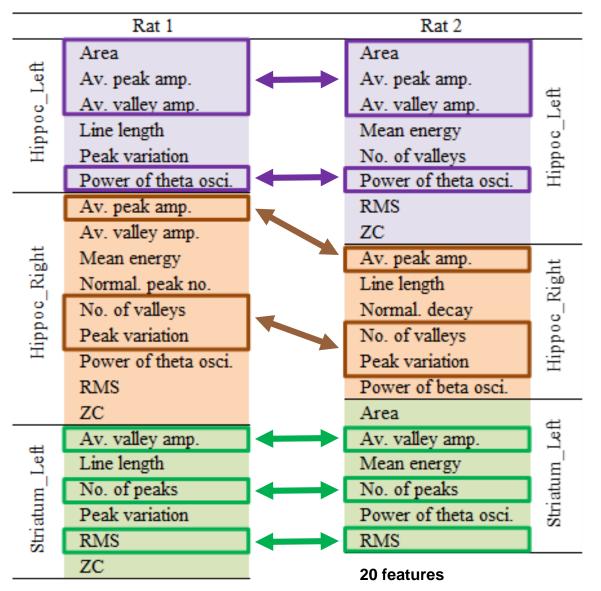


Results (Prediction accuracy with key features)

Subjects	Number of wrong decisions prediction					
	Train Data	Test Data				
Rat 1 (21 features)	6/267 (97.8%)	5/48 (89.6%)				
Rat 2 (20 features)	4/318 (98.7%)	5/57 (91.2%)				



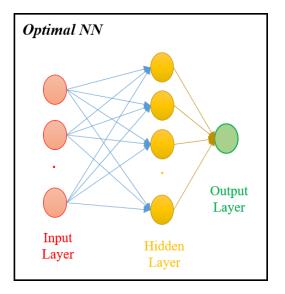
Selected features by GA



21 features

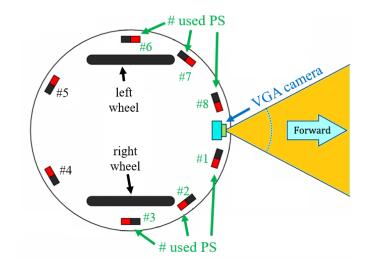
NN and e-Puck robot

NN architecture to predict the robot's decision on each Y-junction



Input layer	21 nodes (Rat 1) 20 nodes (Rat 2)
Hidden layer	30 nodes
Output layer	1 nodes

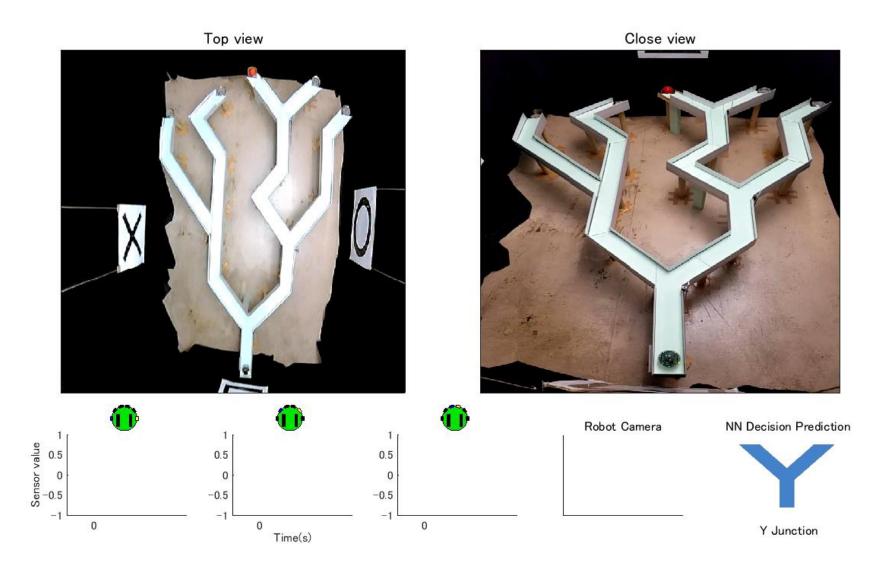
e-Puck robot



Navigating through maze:

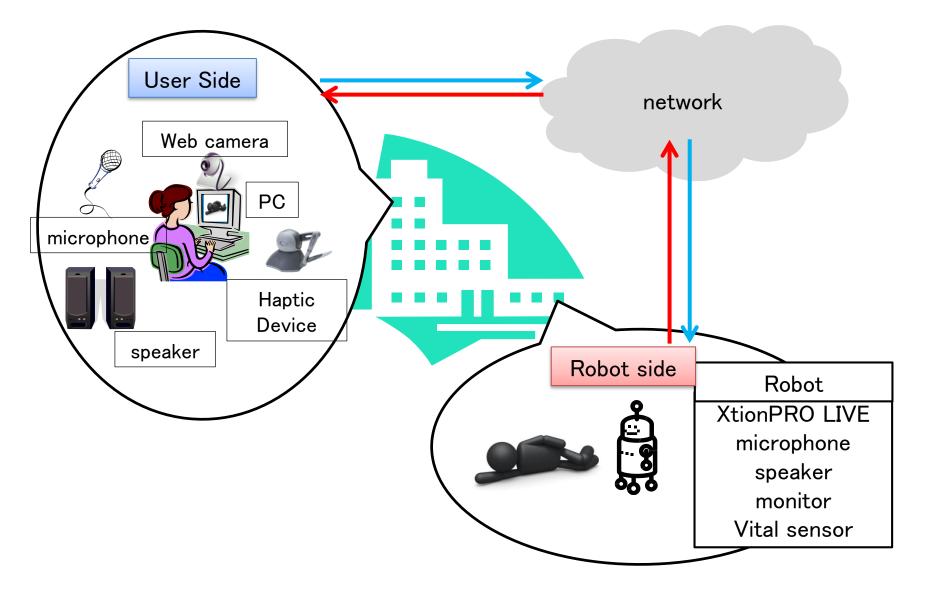
- proximity sensors
- camera (to verify the presence of reward)

Experiment with real robot

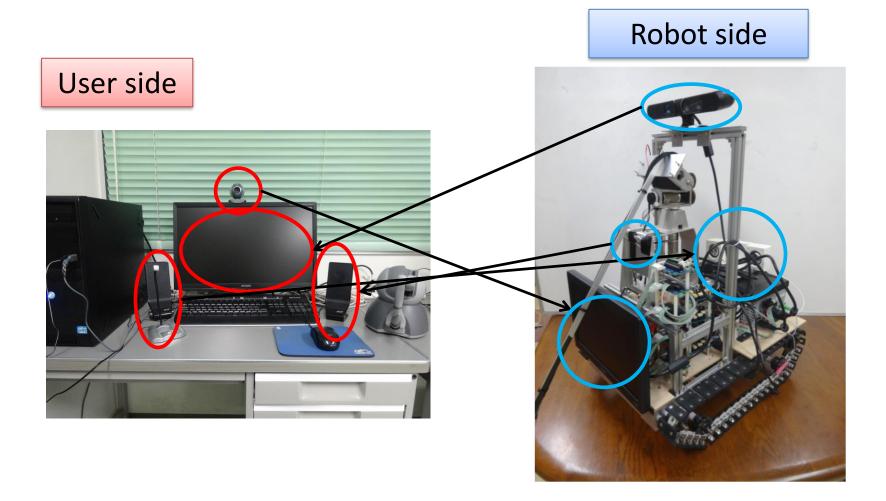


Surveillance robot

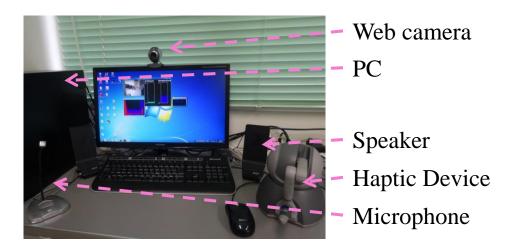
Developed system

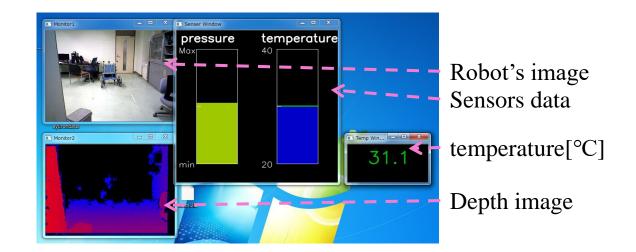


Developed system



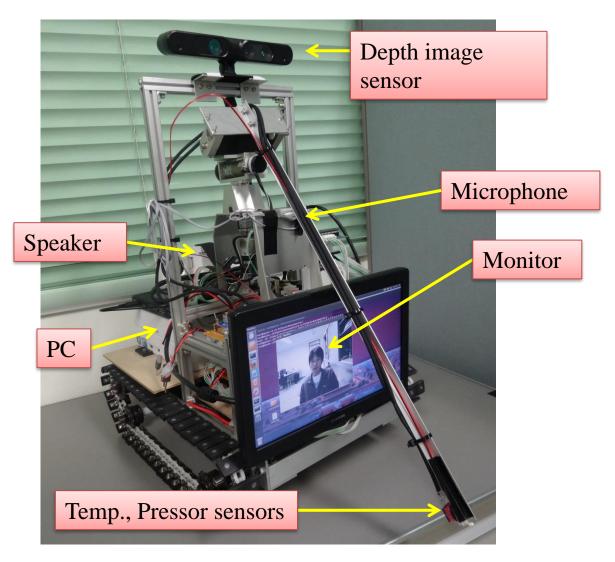
User environment



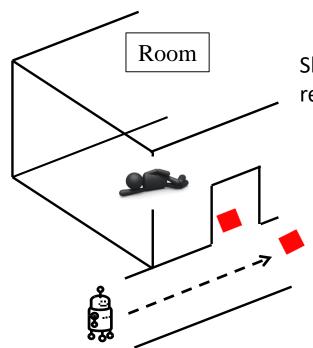


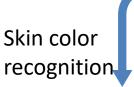
Monitor

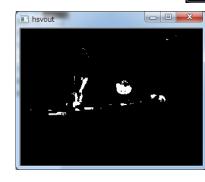
Surveillance robot



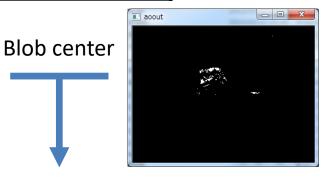
Human recognition



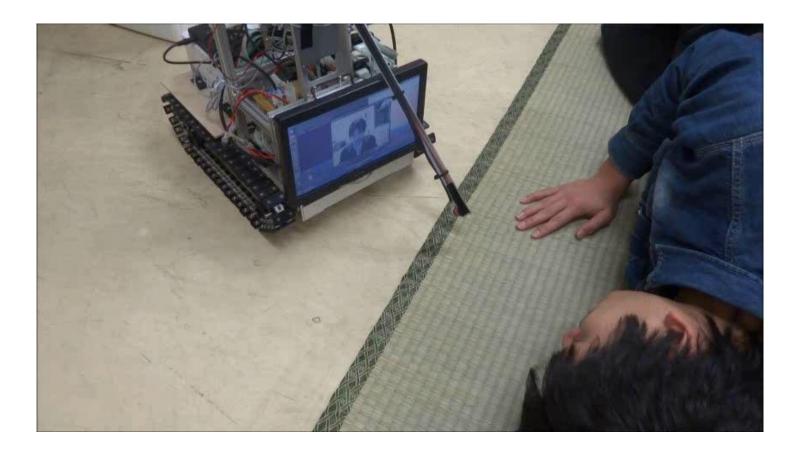




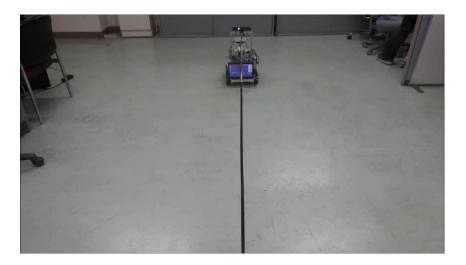
Clothe color recognition

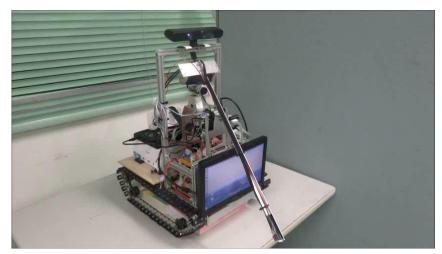


Communication



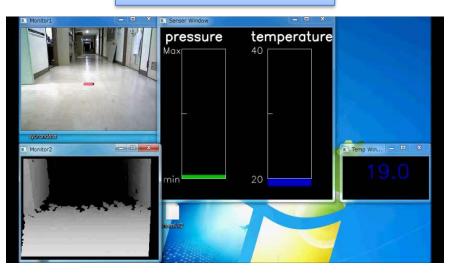
Wireless robot control





Enviromennt exploration

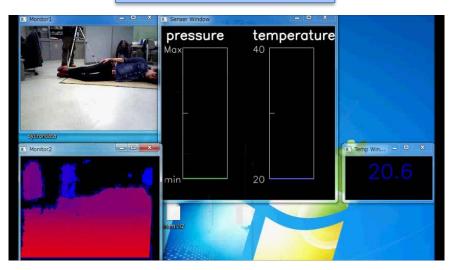
User side



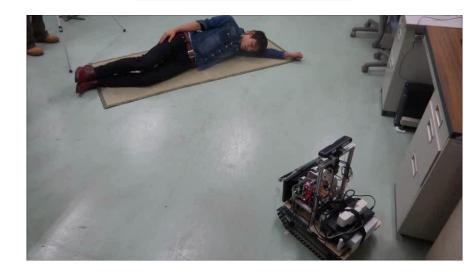
Robot side

Experimental results

User side



Robot side



Application of Deep Belief Neural Network for Robot Object Recognition and Grasping

Introduction

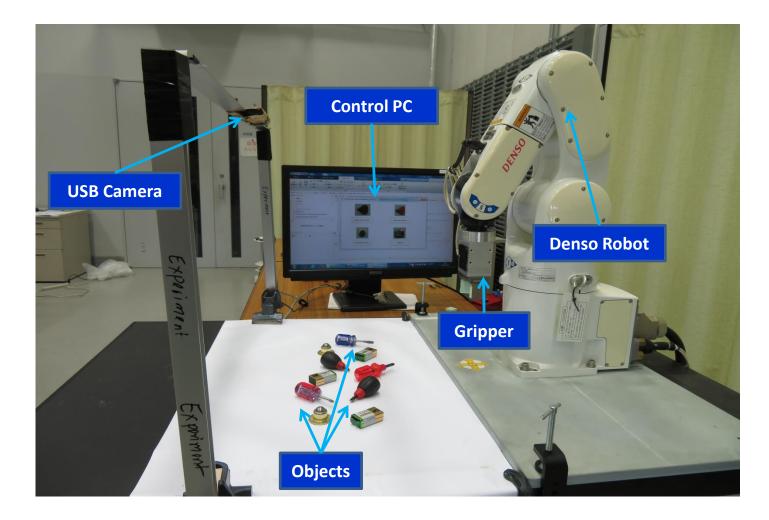
- Small size robot is widely used for assembly task.
- Real time object recognition and robot pick-place operation.
- Deep Learning needs processing time.
- We propose a method to optimize the Deep Learning parameters using Genetic Algorithm for object recognition and robot grasping.

Why DBNN and Evolutionary Method?

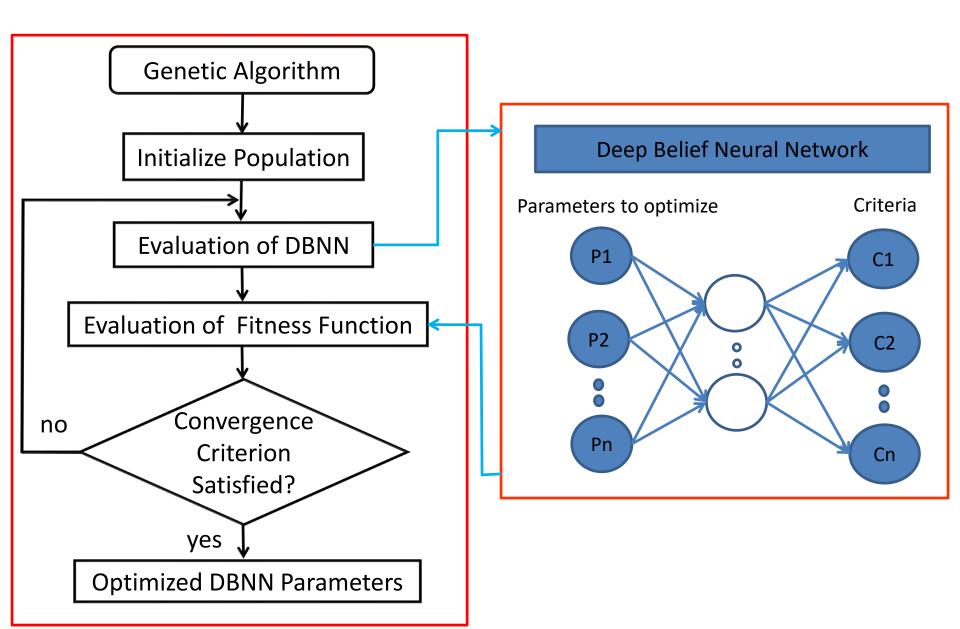
- DBNN makes it easy adding of new objects.
- □ It can be implemented using low-cost USB camera, without the need for depth image sensor.
- □ A single DBNN is utilized to recognize several objects, which reduce the computational cost and time.
- □ Evolutionary method is used to optimize DBNN parameters in order to reduce the error rate and training time.

Robot Task

 \Box Task for the robot is to pick up the specific object required by the user and place it in the target location.

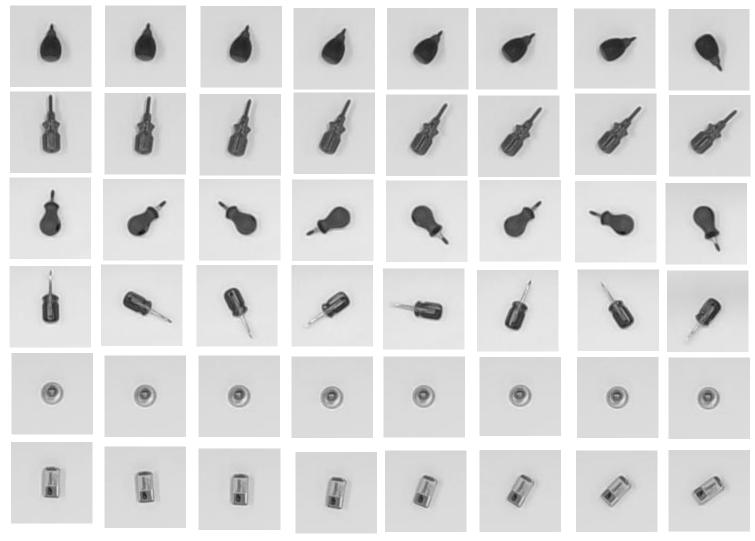


Evolution of DBNN Parameters Materia

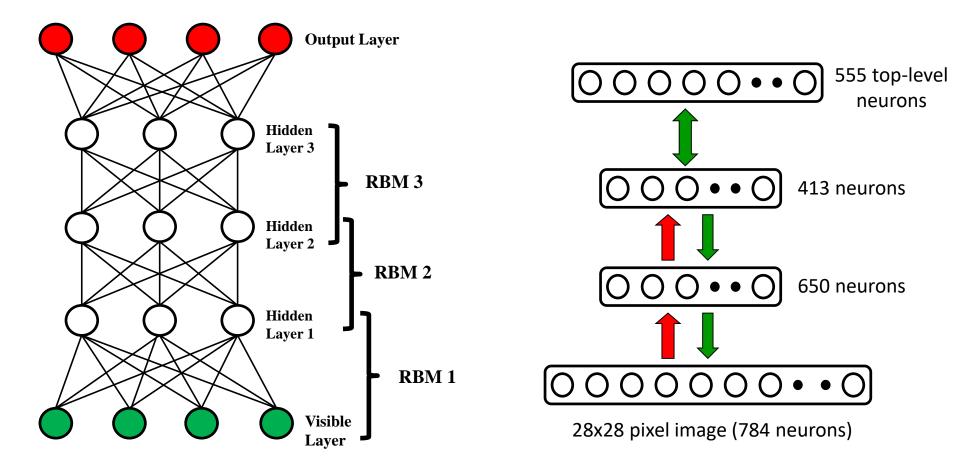


Sample Training Dataset

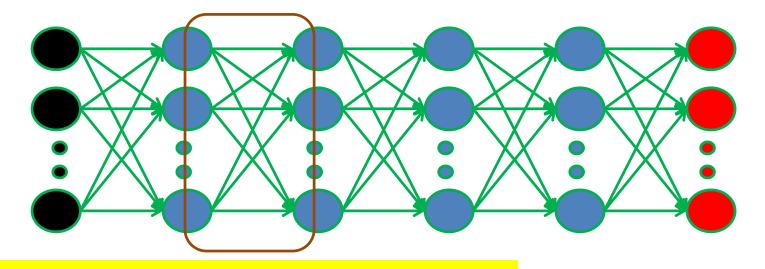
1200 images of 6 objects (200 images for each object).
 To make robustness of the recognition system.



DBNN is the probabilistic generative model, which is constructed by many layers of Restricted Boltzmann Machines (RBMs).



Training DBNNs...



First train visible and hidden layer

then repeat this process several times

Fine-tuning using Backpropagation

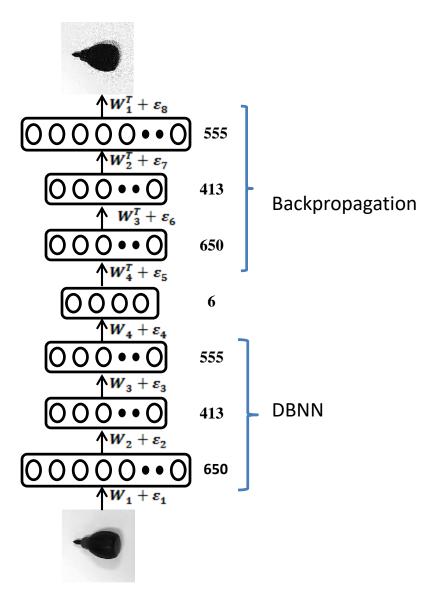
法政大学

Fine-tuned the weights for better object recognition.

The required gradients are easily obtained by using the chain rule to backpropagate error derivatives.

Discriminative learning is used to separate class labels.

• "Softmax" label units represent the object class.



DBNN for Object Recognition

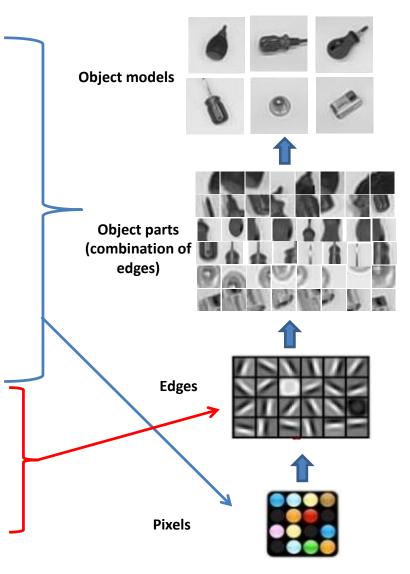
□ Input vector is produced by reshaping the extracted picture of 28x28 pixels.

□ Normalization and shuffling operations are performed.

A nonlinear transformation is applied on the input vector.

□ The vector is used as input of the DBNN.

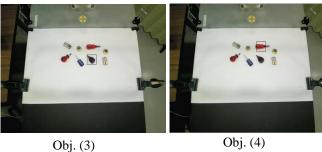
□ To generate features from RBM, we start with binary state of each feature from random state of visible units.



法政大学 HOSEI University **Object Recognition using DBNN**

Obj. (1) (Black Screwdriver)

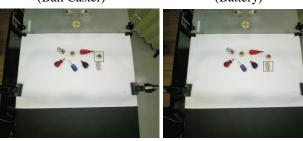
Obj. (2) (Red Screwdriver)



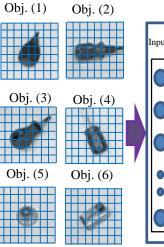
Obj. (4) (Blue Screwdriver)

Obj. (5) (Ball Caster)

Obj. (6) (Battery)



Input images



Obj. (2)		D	BNN			F
	Input	Hidden layer 1	Hidden layer 2			Ob 0.9
Obj. (4)	0					0.0 0.0
Dbj. (6)	•				8	0.(0.(
	0			0	0	0.0

Probability Values of Objects

t	Obj. (1) Obj. (2) Obj. (3) Obj. (4) Obj. (5) Obj. (6)								
		0.9985	0.0000	0.0000		0.0000	0.0000	0.0000	
	I	0.0028	0.9999	0.0028		0.0028	0.0028	0.0028	
	I	0.0000	0.0000	0.9857		0.0000	0.0000	0.0000	
)		0.0001	0.0001	0.0001		0.9998	0.0001	0.0001	
		0.0001	0.0001	0.0001		0.0001	0.9991	0.0001	
)		0.0001	0.0001	0.0001		0.0001	0.0001	0.9999	
									-

DBNN Parameters to Optimize

Number of units in three Hidden Layers

Hidden Layer	Searching Range				
First	[50 1500]				
Second	[50 1500]				
Third	[200 2500]				
Number of epochs in three Hidden Layers					
Hidden Layer	Searching Range				
First	[20 250]				
Second	[20 250]				
Third	[20 250]				
Learning rates in three Hidden Layers					
Hidden Layer	Searching Range				
First	[0.0001 0.09]				
Second & Third	[0.01 0.9]				
Momentum values	Searching Range				
For five epochs					
in each hidden layer	[0.001 0.9]				

Genetic Algorithm (GA)

We use a parallel GA where the population is divided into subpopulation.

Basic Components

- Successor function(s)
 - Mutation, Crossover
- Fitness function
- Some parameters
 - Population size
 - Generation limit

Function name	Parameters		
Number of subpopulations	4		
Number of individuals	25, 25, 25, 25		
Crossover probability	0.8		
Mutation rate	0.1, 0.03, 0.01, 0.003		
Migration rate	0.1		
Results on screen	Every 1 generation		
Termination	30 generations		

Fitness Function

The fitness function is defined as to minimize the error rate and network training time.

$$Fitness = 100 \times (E_{BBP} + E_{ABP}) + \frac{(T_{BBP} + T_{DBP})}{40}$$
where
$$e.g. \quad Fitness = 100 \times \left(\frac{19}{600} + \frac{8}{600}\right) + \frac{(32.7221 + 49.2779)}{40} = 6.55$$

$$E_{BBP} = \frac{number \ of \ misclassification \ before \ backpropagation}{total \ number \ of \ test \ data}$$

$$E_{ABP} = \frac{number \ of \ misclassification \ before \ backpropagation}{total \ number \ of \ test \ data}$$

$$T_{BBP} = time \ required \ to \ train \ DBNN \ before \ Backpropagation \ (sec)$$

$$T_{DBP} = time \ required \ to \ fine - tune \ during \ Backpropagation \ (sec)$$

Optimized DBNN Parameters

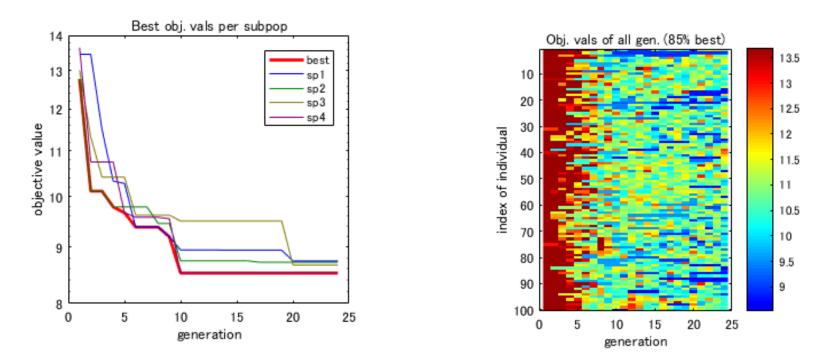
Number of units in three Hidden Layers

Hidden Layer	Searching Range	Best Value			
First	[50 1500]	698			
Second	[50 1500]	432			
Third	[200 2500]	1464			
Number of epochs in three Hidden Layers					
Hidden Layer	Searching Range	Best Value			
First	[20 250]	164			
Second	[20 250]	148			
Third	[20 250]	164			
Learning rates in three Hidden Layers					
Hidden Layer	Searching Range	Best Value			
First	[0.0001 0.09]	0.04474			
Second & Third	[0.01 0.9]	0.44727			
Momentum values	Searching Range	Best Value			
For five epochs in each hidden layer	[0.001 0.9] [0.28,0.28, 0.15,0.55,0.026]			

Genetic Algorithm Results

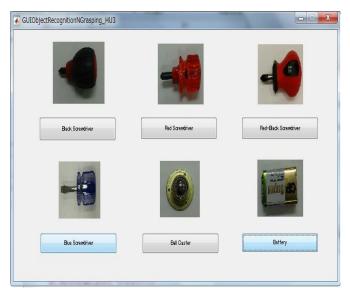
Best objective values per subpopulation

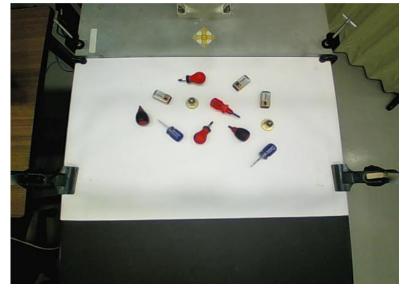
Fitness value of individuals for all generation

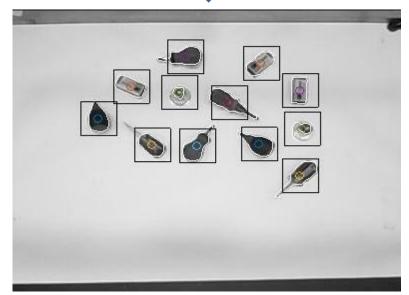


Best fitness value is 8.52528 on 10th Generation

Object Detection

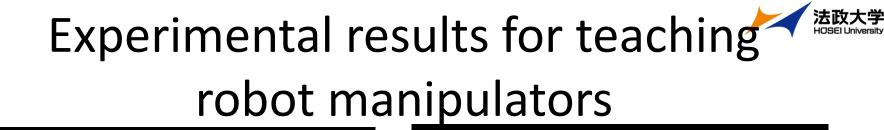






Experimental Results for Object Recognition and Robot Grasping

Multi-robot formation

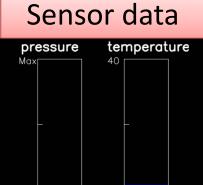


Task.1 X,Y,Z方向移動

Task.1 X,Y,Z方向移動

Surveillance robotic system

Server



Acknowledge

Postdoctoral Researcher

1. Delowar Hossain (PhD)

PhD Students

- 1. Trần Đức Dũng
- 2. Sivapong Nilwong

Master (2nd Year) Students

- 1. Masahiro Namekawa
- 2. Keisuke Atsuzawa

Master (1st Year) Students

- 1. Yuki Hasekura
- 2. Yusuke Nojima
- 3. Nakata Kentarou

Bachelor (4th Year) Students

- 1. Yamakawa Kento
- 2. Sasaki Tsuyoshi
- 3. Yamada Atsushi
- 4. Sigemitu Ryoma
- 5. Sekiguchi Makoto
- 6. Kishimoto Ryosuke
- 7. Sugiyama Namiki
- 8. Kato Ren
- 9. Kato Rei
- 10. Siozawa Kouhei
- 11. Takagai Yuki
- 12. Rinta Goto